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Abstract

As software system requirements become more complex, software engineers must

carefully design the systems to ensure the systems adequately meet all the requirements,

both functional and non-functional. Because real-time systems have timing constraints,

in addition to the more traditional behavioral constraints, a comprehensive software de-

sign analysis model is required which incorporates performance, timing, and behavioral

constraints. Although the Ada language tasking constructs are compiler independent, Ada

tasking is dependent on its runtime environment; therefore, a formal model of Ada tasking

and its associated runtime environment is important in order for system designers to make

realistic decisions when mo elin: Mission Critical Computer Resources (MC CR) systems.

The main focus of thiseSeariffar44s to determine the feasibility of develop;,- a pa-

rameterized, formal model of Ada tasking and the associated runtime environment. This

research shows that such a parameterized model can be developed uising a mathematical

model which incorporates real-time scheduling and queueing theory. This model can be

used in the future to develop a design analysis environment for reial-time embeddvd soft-

ware systems that require Ada as the target language. Thus, given a specification for su('h

a system, the design analysis environment can be used to obtain the iiformatioi ir,,.dd

to support Ada software design decisions.
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FEASIBILITY ANALYSIS OF DEVELOPING

A FORMAL PERFORMANCE MODEL

OF Ada TASKING

. Introduction

1.1 Background

The Department of Defense (DoD) sponsored the development of Ada in order to

combat increasing software complexity, especially in embedded, real-time computer sys-

tems. Embedded applications tend to be large, long-lived, subject to contin-otis change,

subject to hardware constraints, and are required to be highly reliable and fauit tolerant

(3:15). The DoD has recently mandated Ada as the "single, common , computer )I0o-

gramming language for Defense computer resources used in intelligence systems, for the

command and control of military forces, or as an integral part of a weapon system" (7:2).

These systems are typically large, embedded computer systems which have real-time pro-

cessing constraints.

Real-time systems are divided into two groups: hard real-time systems and soft

real-time systems. "In soft real-time systems, tasks are performed by the system as fast

as possible, but they are not constrained to finish by specific times. On the other hand. in

lhard real-time systems, tasks have to be performed not only correctly, l)tit also in a tiiiely

fashion. Otherwise, there might be severe consequences" (24:1-51).

"Hard real-time systems are defined as those systems in which correctness of the sys-

tem depends not only on the logical result of computation, but also on the time at which

the results are produced" (24:1). Because real-time systems have timing constraints, in

addition to the more traditional behavioral constraints, a comprehensive software design

analysis model is required which incorporates performance, timing, antI behavioral con-

straints.

"Embedded computer systems are usually defined to be those computer systems that

constitute a part of a larger system whose primary function is other than computational.

: 1-1



The primary function of the computers are to monitor and-control devices* (2:3). Ini addi-

tion, Embedded Computt-Systems (ECS) generally have real- time processing constraints

which require concurrent computation. Examples of ECS in the DoD are large systems,
such as, the flight control computers for the F-15, F-16, and F-ill. These systems must

'be reliablefault tolerant, and easy to modify over their long life span (3:15).

1.2 Statement of the Problem

The biggest problem with existing models of concurrent/parallel computation, such

as Communicating Sequential Processes (CSP) and Petri Nets, is that they concentrate

on modeling a system's behavior and tend to ignore, or abstract away, _performaice and

timing issues.

It is important to specify timing requirements in the system specification for hoth

the software and -hardware. In the past, the system specification was mainly concerned

with describing aspects of hardware architecture (e.g.,-speed and memory capacity): Ile

software-timing and speed were simply a function of the hardware and the prograinmmer's

creativity. Due to the-stringent timing requirements of real-time systems, it is iniperative

that the system specification include both hardware and software constraints. Performance

and timing requirements are critical issues for real-time systems and iiiist be includcd-in

the system specification to determine how-the specified Ada runtime environment (RTE)

impacts a given design- and implementation.

In order to adequately model a Mission Critical Computer Resources (MCCII) sys-

tem, both performance and behavior must-be described by a comprehensive formal model.

Such a model of Ada tasking, and its associated RTE, is important in order for system

designers to make realistic decisions when modeling MCCR systems. Although the Ada

language tasking constructs are compiler independent, actual Ada tasking behavior is de-

pendent on its RTE. It is, therefore, important for the systems and software engincers

to be aware of how the RTE behaves in order to properly design these complex MCCR

systems. The need fora formal model of Ada tasking and its associated RTE is increasing

- as -Ada's usage increases in concurrent/parallel computing systems.

1-2



Because each R.TE is different, an Ada tasking model needs to be parametrized to

reflect the underlying RTE. Thus, the model will also be useful in determining which RTE

-best suits the needs of a particular embedded computer system. Alternately, since the

= selection of the RTE isoften determined by computer system engineers, the model may

be used by software engineers to point out potential problems with the existing RTE and

the proposed software design.

The primary goal of this research effort is to analyze and develop a parameterized,

formal model of Ada tasking and the associated RTE that incorporates the performance

aspect. This goal is based upon the hypothesis that such a formal model can be developed

which combines graphical and mathematical notations.

'13 Summary of Current Knowledge

Although Ada has been mandated for embedded systems (7:2), there is doubt among

members of the software engineering community as to whether Ada is capable of providing

adequate support for real-time embedded computer systems (14:,49.1-4195). Nevertheess,

Ada contains the tasking facilities and low-level I/O necessary fori iplementi ng real-t-i me

embedded computer systems. However, the diversity of the scheduling algorithms in each

IITE causes each environment to be different and, until a standard RTIE exists. soft.wa re

engineers must search for the environment that is appropriate for their application or crcialc

a design that is appropriate for the environment

Concurrent programming is important for real-time systems because iI is possible for

events to arrive that must be handled simultaneously. Although most current programming

languages only allow sequential execution, the Ada tasking facility allows programs to

-execute concurrently. "Tasking is an important aspect of many embedded systems ...

However, tasking seems to have been neglected in most languages in production use for

such systems" (15:269). The concurrent execution of tasks also makes programs more

difficult to write and causes the RTE to be more difficult to implement.

1.3.1 Ada Tasking. "A task is the scheddling entity in a system" (24: 1.53). 'rhe

Ada Language Reference Manual (LRM) defines Ada tasks as "entities whose executions

1-3



-proceed in parallel" (8:9-1). Although tasks are able to operate concurrently, there is

no requirement that they-must execute at the same time. A uniprocessor system may

:qnly have one process (or task) executing at any given time; the processes take turns

executing and, although only one task is actually executing at a time, they are all said to

be, "logically" executing.

Ada tasks operate independently except when they need to synchronize with another

task at which time they are said to "rendezvous" (8:9-1) (15:306). One task calls another

task by issuing an entry call and when the called task accepts this call, the two tasks are

in a rendezvous and may then exchange data. After completing the rendezvous, the tasks

again execute independently and asynchronously.

It is possible for several tasks to call another task at the same time. 'When this

occurs, the calling tasks are placed into an entry queue and the called task will rendezvous

with the calling tasks in the queue according to a First-Come-First-Served scheduling

algorithm (8:9-9) (15:276).

1.3.2 Ada Runtime Environments. When the first programs were written for

mainframe computers, software developers created code segments for the bare computer

hardware. As time went on, the software engineers agreed on basic conventions in order

that their code might work together. They also built subroutines which could be reused

from application to application, thus, greatly simplifying programming. These conventions

and subroutines allowed the software engineer to abstract one level away from the bare

machine and became a basic RTE.

At this point, however, the bare machine was still accessible to the progrmmer

whose code would interface with both the RTE and the bare machine. This allowed each

programmer to create his own abstraction of the computer. As time went on, the basic

subroutines of the RTE were refined and improved with the machine-dependent features

becoming the operating system and the language-dependent features being handled by the

compiler.

The R.TE allows the programmer to abstract away low-level implementation details

which are unique to each machine. The convenience of using the RTE offsets the slight

1-4



decrease in performance due to the overhead of the RTE. Each RTE is developed for a

specfic machine; therefore, an application tailored for one machine may perform much

-differenty on another machine; this is due entirely to its RTE (1:11).

Ada is defined in the LRM and any Ada RTE must comply with the requirements

therein. However, the LRM allows great flexibility in how the RTE will support Ada and

since there is currently no standard Ada RTE, there can be many interpretations and

differing Ada RTEs (1:14).

1.3.8 Scheduling Algorithms. A scheduler decides the order of execution for

-tasks on a central processing unit (CPU), entry queue, or input/output processor (lOP).

The CPU and entry schedulers are important within Ada task scheduling. Tasks may

be periodic or aperiodic, independent or synchronous. Periodic tasks repeat after a fixed

interval of time, whereas, aperiodic tasks occur only once, or at random intervals. Periodic

tasks have a specified repetition rate called the frequency or request rate. There are varvi ii"

degrees of synchronous tasks; synchronous tasks may be totally dependent on other tasks

or they may only need to exchange data occasionally. As mentioned previously. Ada

tasks exchange data by synchronizing in a rendezvous. Independent tasks do not nced to

exchange information with other tasks and, therefore, do not rendezvous with other tasks.

Deadlock, starvation, and task set performance are important issues for scheduling

algorithms. Starvation occurs when a task or group of tasks is not allowed to execute.

Performance is a measurement of throughput and turnaround time. Throughput measures

how many tasks complete in a given time period. Turnaround time measures how long a

particular task takes to complete. Each scheduling algorithm has different performance;

some algorithms that allow starvation may actually have better average performance than

algorithms that do not allow starvation (23:Ch 4).

Some examples of possible scheduling algorithms are: First-Come-First-Serve (FCFS),

Shortest-.Job-First (SJF), Round Robin (RR), and Rate Monotonic (11M), and each of

these are summarized below.

1-5



1.3.3.1 First-Come-First-Serve (FCFS). The FCFS scheduling algo-

rithm iS the easiest to implement. New tasks are placed at the tail of the ready queue and

are allocated from the head of the queue. In FCFS, all tasks are of equal priority which

causes performance to be poor because the average waiting time is not minimized (18:106).

The benefit of FCFS is that it will not allow starvation.

I.$;3.S Shortest Job First (SJF). The SJF scheduling algorithm allocates

the task with the smallest estimated execution time or "burst." If two tasks have the same

burst time, then FCFS scheduling is used. There is no way of knowing what the actual

length of the next burst will be without future knowledge; therefore, the next burst will

- be estimated upon its past performance. SJF gives the minimum average waiting time for

'a set of tasks since it chooses a short task before a long task. This will decrease the short

task's wait time more than it will increase the long task's wait time. Thus, SJF gives a

lower average waiting time. A problem with this method is that tasks with large bursts

may starve since the algorithm constantly chooses the task with the shorter burst times

(23:180).

Additionally, the SJF algorithm can be preemptive or non-preem ptive. preem pti ve

S.JF allows the task currently running to be interrupted when a new task arrives in the

queue which has a smaller burst time. A non-preemptive SJF allows the task running on

the processor to execute until it completes.

1.3.3.3 Round Robin (RR). The RR scheduling algorithm is similar to

FVCFS except that it preempts an executing task after allowing it to run for a specified

time or quantum. It then places the task at the end of the ready queue. This algorithm

is often used on uniprocessor systems in order to give the illusion that all the tasks are

operating concurrently. The RR algorithm does not allow starvation. If the time quantum

is too large, the RR algorithm behaves like the FCFS algorithm mentioned above.

1.3.3.4 Rate Monotonic (RM). The RM scheduling algorithm, used for a

set of independent periodic tasks, selects tasks based upon their period. Tasks with shorter

periods are scheduled before tasks with longer periods. "A major advantage of using the

1-6



-rate monotonic algorithm is that it allows us to separate logical correctness from timing

correctness concerns" ,(22:7).

1.3.4 Ada RTE Schedulers. A real-time scheduler assigns an ordering (sched-

ule) to a set of tasks in order to meet timing, precedence, or resource requirements of

real-time systems. An Ada RTE requires two schedulers: one to schedule the tasks to run

on the processors; and one to schedule the synchronization points for each entry queue.

These algorithms need not be the same.

Processor scheduling can use any scheduling discipline; however, certain algorithms

will be more efficient for specific applications. Most Ada RTEs use FCFS or RR. (26:5-t5).

Each entry point has its own queue and the entry scheduler must use the FCFS

algorithm, as illustrated by the following quote from the LRM.

If several tasks call the same-entry before a corresponding accept statement is
reached, the calls are queued; there is one queue associated with each entry.
Each execution of an accept statement removes one call from the queue. The
calls are processed in the order of arrival (8:9-k).

Although the FCFS schedule does not produce the shortest schedules (i.e., best

performance), it is non-preemptive. This allows the code within the accept statement to

be treated as a critical section. A critical section protects a shared data area and only

one task should have access to this section at a time or data may be lost or overwritten

(23:83). Once an entry is selected, it must be allowed to continue executing until it is

completed. No other accept statements for the tasks in the rendezvous will be allowed to

execute until the current rendezvous is complete. Preemptive schedulers, such as, the RR

and preemptive SJF, are not allowed because they may interrupt a task while in a critical

section.

1.4 Scope

A formal model of Ada tasking is expected to generate performance statistics for a

set of Ada tasks based upon specific runtime parameters, such as, the scl.eduling algorithni

1-7



and task-execution times. The benefit of modeling the performance is that software engi-

n'eers will know whether or not their design meets the required performance criteria before

implementing the code. If the criteria are not met, they can modify their design until it

'doen meet the requirements or find a RTE that meets the requirements.

The model incorporates the Ada language constructs detailed in the Ada LRM (e.g.,

entries, accepts, delays, priorities) (8:Ch 9) and includes the sequence of events and timing

information. The actual model was developed mathematically and is based on constructs

in ,queueing theory, set theory, and real-time scheduling. Because of its mat!,ematical

nature, this model may be difficult for non-technical people to understand; therefore, a.

'futureresearch effort will produce a rapid prototyping environment that will perform the

mathematics and provide a simplified user interface. The ultimate goal of oi'tre research

will be to create an automated tool that will return a trace of events and performance

--statistics.

The basic hypothesis of this research was that a formal model of Ada tasking could be

developed, and that the model could be used to help develop design analysis environments

for distributed real-time software systems requiring Ada as their target language. Thtus.

given a specification for such a system, the design analysis environment can be used to

-obtain the information needed to support Ada software design decisions. No effort was

made to design and implement a design analysis environment in this research effort.

1.5 Approach and Methodology

In order to develop the parameterized model, a literature search was conducted to

determine how and why the Ada tasking constructs were defined (8:Ch 9) (15:CIi 13)

and then a survey was conducted of existing types of formal-based models of p,ral-

lel/distributed computation, e.g., Petri Nets and CSP. Additionally, queueing theory and

real-time scheduling were investigated. Finally, current behavioral models of real-time

software analysis and design methodologies such as Real-Time Structured Analysis (RTSA)

and the Design Approach for Real-Time Systems (DARTS)- were explored. The goal was

to ultimately incorporate the formal tasking model into one of the existing methodologies

and, in fact, the DARTS methodology was selected.
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After the initial research, the results were generalized into an Ada Tasking Model

which synthesized the applicable concepts gleaned from the current models and methods

-.mentioned above. The initial model provided a broad base for the final parameterized

model which was developed after several iterations.

Typically, a software development life cycle contains three basic phases: a software
requirements analysis phase, a software design phase, and a low-level software design and

implementation phase. The model developed for this research is part of the software design

phase and is concerned solely with the Model Design Performance block in Figure 1.1.

Software Software
; _Software

Requirements g .. ...
Requirment.Design and

..ly i D esign
Analy~s I I I Implementation

:::: 2: RealTithe
- : [ .Structured!

[ (RTSA)

- - - - - - - - - - - - - - - -

DARTS based

Define Divide Define
SInterfaces Subsystems Task -

Between
Subsystems into Tasks Intei faces

r - --- --

Design Model

Individual

Tasks Performance
--!

Figure 1.1. Software Developnient Life Cycle
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This research -ocument Is organized as follows: Chapter II describes formal model-

inig; ChapterIII defines the top-level design for a proposed performance model; Chapte' IV

contains a description of the detailed design of the proposed model; Chapter V discusses

-validating the model; Chapter VI gives recommendations for further research. There are

-three appendices attached: Appendix A contains a list of the acronyms used in this docu-

ment; Appendix B contains a detailed Structured Analysis and Design Technique (SADT)

description of the Ada tasking model; and Appendix C contains the programs used to

validate the model.
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II. Modeling

As, software system requirements become more complex, software engineers need to

carefully design their systems to ensure that the system ade.quately meets all its timing

and behavior requirements. Modeling allows a designer to create an abstraction of the

- -: system-and add detail in an iterative fashion as the requirements become more clearly un-

-derstood. Due to the complexity of real-time system requirements, it is extremely difficult

-for a designer to initially understand the entire system and how its components inter-

act. According to Pritsker, " t]he entire model building approach is performed iteratively"

(2:5). By modeling the system with increasing levels of complexity, a designer will gai n a

better understanding of the requirements and have more confidence that the design motts

t-hose requirements.

Coding is an expensive process and, once code has been written, many manages are

not willing to throw it away and start over if problems are found with thc design. I tstcad.

they will encourage-the programmers to manipulate the existing code to nake it fit the

new scenario. One way to save time, money, and wasted effort, when designing software,

-is to first develop the top-level design and then create a model of that design. The model

-ill allow a designer to abstract away the low-level details until the system requirements

are better understood. However, it must be remembered that an inherent problem with

-models is that-simplifying a"sumptions must be made in order-to abstract away unwanted

or-unnecessary detail. These assumptions must be valid or they invalidate the model since

-the model no longer accurately reflects the intended system.

2;1 Definition of Models

Models for a software design are much more flexible than the code for that design;

therefore, changes can more easily be made to the model. This flexibility encourages

-the designer to create the model in stages; ultimately creating a software design model

which accurately portrays the real system and meets the stated requirements. Modeling

_also allows a designer to compare multiple approaches to solving a problem. Therefore,

a designer can confidently choose to implement the design which represents the optimum
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K solution. Once the model has been used to analyze a proposed software design, the code

can be Written and the designer will have confidence that the code will accurately reflect

,the requirements of the system.

There are several types of models: descriptive (natural language); physical (actual

representation); symbolic language (mathematical); graphical; and procedural (simulation)

(9:6). The models of Interest to this research are the symbolic and graphical models. The

symbolic models are concise, formal models which mathematically describe a system's

behavior. Graphical models describe the behavior of a system pictorially.

This chapter presents an overview of the following formal models: Communicating

'Sequential Processes (CSP) (13), Petri nets (19), and Unbounded Nondeterministic Iter-

ative Transformations (UNITY) (4). Additionally, three graphical models are described:

Real-Time Structured Analysis (RTSA) (2), Design Approach .for Real-Time Systems

'(DARTS) (11), and Structured Analysis and Design Technique (SADT) (12); and the

top-level design of the Ada task'ing model is introduced.

2.2 Formal Models of Parallel/Distributed Computation

F 2.2.1 Communicating Sequential Processes (CSP). CSP, a formal model

developed by C.A.R. Hoare (13), can be used to model event driven systems. CSP had a

strong influence upon the design of the Ada rendezvous; however, while the rendezvous in

Ada is one-sided, or asymmetric, the communication between tasks in CSP is symmetric

(15:306-308). The asymmetry of Ada task communication allows one task to call another

task, such that, the called task does not know the name of the task which is calling it. The

result of the asymmetry is that entry queues may be formed.

Processes in CSP can execute concurrently by communicating via message passing;

although processes in CSP can execute concurrently, only one event is allowed to occur at

a given time. Hence, it is not possible to determine if two events happened simultaneously.

If strict concurrency is necessary, it must be modeled as a single-event occurrence.

2.2.2 Petri Nets. Petri nets combine graphical and mathematical notations. As

with CSP, it is not possible to model simultaneous events (19:37). The execution of a Petri
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net Is nondeterministic (19:36) and-general Petri nets abstract away timing issues: "There

'is no inherent measure of time or the flow of time in a Petri net" (19:35). In addition, a

m"jor disadvantage of Petri nets is that the complexity of the model increases with the

size of the system. This increased complexity means that they tend to be useful only for

-manually modeling small systems.

-. *.S UNITY. UNITY, developed by Chandy and Misra, is a "computational

model and a proof system" (4:8). The goal of UNITY is to mathematically design programs,

at a high-level, which are free from implementation issues, such as computer architecture

and language, and whose correctness can be proven. The disadvantages of UNITY are

that it is hard to understand andproving that the high-level UNITY program meets the

requirements does not mean that the program implementation meets the requirements.

Another disadvantage of UNITY is that it abstracts away timing issues and does not allow

a designer to specify a control sequence. Thus, timing issues cannot be modeled in UNITY.

The formal models mentioned in this section, i.e., CSP, Petri nets, and UNITY, are

adequate for modeling the behavior of the system; however, they ignore timing require-

.ments and are difficult to apply. The next section discusses three graphical models.

2.3 Graphical Models

2.3.1 Real-Time Structured Analysis. RTSA, a variation of structured anal-

ysis and design developed by Yourdan and DeMarco, is used during the software require-

ments analysis phase. (See Figure 1.1 for the Software Life Cycle.) R.TSA extends the

traditional data flow diagrams to include timing information through the use of control

flows and transforms. The designer creates the data flow/control flow diagrams during

RTSA and supplements the diagrams by natural language or state transition diagrams.

'The disadvantage of RTSA is that it has no formal mathematical basis that can be used

to analyze the resulting RTSA design.

2.3.2 Design Approach for Real-Time Systems. DARTS is also an extension

of structured analysis and design. Using a RTSA input, DARTS focuses on decomposing
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a system into a set of concurrent tasks and models the inter-task communication. After

DARTS-is completed, each subsystem has been divided into sets of tasks which operate

concurrently and each task has a single thread of control. However, DARTS does not

specify the timing, hardware, or RTE requirements, and as with RTSA, the DARTS design

-hat no mathematical basis for evaluating the quality of the design.

DARTS is performed after the software requirements analysis has been completed

and it has four steps (represented within the dashed lines in Figure 2.1):

- define the interfaces between the subsystems;

* structure the subsystems into parallel tasks;

* define the interfaces between the tasks; and

a design individual tasks using structured design.

2.3.3 Structured Analysis and Design Technique1 . SADT (12), as the name

suggests, is also a variation of structured analysis and is used during the software require-

ments phase. (See Figure 1.1 for the Software Life Cycle.) As with RTSA and DARTS,

an, SADT design has no formal mathematical basis and cannot be proven mathematically.

SADT is described here in detail because SADT was used in the requirements analysis,

specification, and design of the developed Ada tasking model.

A generic SADT diagram is shown in Figure 2.2.

2.3.3.1 Interfacesi The basic element in SADT is the function whichl de-

-scribes a process or action and is represented by a box. The arrows define interfaces and

-are-described in the following quote.

=I

Interfaces are represented by arrows entering or leaving the box. The type of
interface is indicated by the side of the rectangle to which it is connected ...
input arrows enter the left side of the function box, output arrows leave the
right side of the box, control arrows enter the top of the box, and inechanism

'SADT is a trademark of SofTech.

2-4



DARTS based

BewtnSubsystems Task

DesignModel

Individualal Design

Tasks I Performance

Figure 2.1.g SotarPesinc

Defin App2 Ad



Control

Input Output

Function

Mechanism

Figure 2.2. Generic SADT Diagram

arrows either enter or leave the bottom of the box. The function is viewed as
transforming its inputs into outputs under the guidance of its controls. (12:7)

SADT descriptions do not impose timing requirements so the arrows merely repieselt

constraints; a function cannot commence unless its control and inputs are available. "'The

functions represent processes that must occur, but may in fact occur simultaneously. Tile

arrows represent data or information produced by or needed by a function. They should

not be viewed as flows or sequences of operations" (12:7).

Additionally, every function requires at least one control arrow and one output arrow.

regardless of whether or not there are any input or mechanism arrows. The mechanism

arrows "indicate a means of performing the function" (12:7).

2.3.3.2 Hierarchy of Numbering. SADT has a special numbering system

which denotes the hierarchical level of decomposition. Each function box label begins with

an "A" which stands for "Activity." The top-level, or environment model, is labeled as

level A-0 and contains a single box. This box shows the interconnection of the system

to be modeled with its environment. The first level of decomposition is labeled ,\o and

represents the major subfunctions of the system. Each of the boxes, or Functions. at level
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AO are sequentially labeled Al, A2, etc. In turn, the functions on the level Al diagram

are labeled All, A12, etc. This numbering system facilitates determining the level of the

diagram and maintaining consistency between the levels.

2.4 Deficiencies of Real-Time Models

The formal models described in Section 2.2 model the behavior of the system but

are either too complex to use, ignore timing requirements, or both. The graphical models

described in Section 2.3 lack the formalism of the formal models which is important when

analyzing the design.

Because real-time systems have these timing constraints, in addition to behavioral

constraints, a formal software design analysis model is required which incorporate. per-

formance, timing, and behavioral constraints. Consider, for example the DARTS design

methodology, the box labeled Model Design Performance in Figure 2.1 is an additional

step added to DARTS which deals with solving these deficiencies, and the object of this

research is to analyze the feasibility of constructing such a model. Specifically, the next

chapter introduces the top-level design for the design performance model.
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IlL Design of the Ada Tasking Model

This chapter describes the top-level design of the performance model of Ada tasking.

The Model Design Performance activity in Figure 3.1 is performed after the initial DARTS

design has been accomplished. If application of the performance model shows that the

software design fails to perform as required, then the software design must be modified

or reaccomplished and the performance model reapplied. This feedback loop continues

until such time as it is determined the software design satisfactorily meets its performance

requirements.

3.1 Model Design Performance

Figure 3.1 is an SADT diagram representing the environment, or A-0 level diagra in.

The function, Model Design Performance, is an extension to DARTS aitd is applied after

the initial DARTS design has been completed. Model Design Performance requires that tie

software design first be produced using DARTS. In addition, A![odel Design Perfornmir

requires the non-functional requirements and scheduling information about the RTE.

The Model Design Performance activity is decomposed into two functions: Dcfile

Task Performance Requirements (Al) and Model Ada Tasking (A2). Note that the out put

arrow, Performance Data, has been decomposed into schedulable, task schediule, eltry

trace and performance stats. The decomposition for Model Design Performance is shown

in Figure 3.2, representing the AO level, and the activities Al and A2 are described in the

Sections 3.2 and 3.3.

3.2 Define Task Performance Requirements

The function, Define Task Performance Requirements, has three interface arrows: the

control arrow is the software design; the input arrow is the non-functional requirements;

and the output arrow is the task information which includes the task names, periods,

execution times, etc. (For more detail on the task information, see the data dictionary

in Appendix B.) Note that there is no mechanism for this function. The remainder of

this research concentrates on developing the Ada Tasking Modei (level A2) with certain
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assumptions made about the outputs of Al. A more comprehensive examiiation of defiiing

task performance requirements (Al) will be accomplished in follow-on research.

3.3 Model Ada Tasking

The function A2, Model Ada Tasking, has six interface arrows: one mechanism, four

outputs, and one control. The mechanism arrow is the RTE. The four output arrows are:

schedulable, which is a Boolean flag that tells the designer if the tasks can be scheduled

based upon the given RTE and task information; task schedule, which is a possible schedule

based upon the scheduling information from the RTE mechanism and the task information;

entry trace, which is a possible sequence of entry points based upon the task schedule; and

performance statistics, which are statistics describing the design performance. The control

arrow is the task information which is the same as the output arrow from function Al.

The task information includes the task name, execution time, period, etc. In order

to schedule a group of tasks, the task execution time (Ei) and period (Ti) must be known.

These values are used to determine each load factor which is the execution time of a tassk
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divided by its period ( ). Each processor may only execute a set of tasks if the sun' of

their load factors is less than 1, where 1 represents 100% utilization of the processor.

The basic components of the Ada tasking model (shown in Figure 3.3) are Deter-

mine Unschedulability, Create Schedule, and Model Entry Calls. Functions A21 and A22

determine if the given set of tasks are schedulable and, if so, a schedule is found. Func-

tions A21-A23 are summarized below; the details of these functions have been placed in

Appendix B.

task nfo

.n Un schedulab- t Fm
1 Jces tL bility

(n ce sary chedulbLe

condition)

A21j

mrocessadwop Schedule 
task chedul bt(suffcient

task info condition)

A22

talk info E_ ntry

Calls perf .A A

A23

scheduler

info

Figure 3.3. Level A2

3.3.1 Determine Unschedulability. Function A21, Determine Unschedulabil-

ity, has four interface arrows: a control arrow labeled task info; art input arrow labeled

hum processors; and two output arrows labeled bounds and schedulable. The interface ar-

rows, task info and schedulable, were defined above. The interface arrow, num processors,

refers to the number of processors which will be used in the target machine for the systemn
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the designer is modeling. The interface arrow, bounds, is an integer range which defines

the upper and lower bound on the number of processors required for the target malui ne.

If num processors is within this range and if schedulable is true, then the designer can

proceed to Level A22. If either of these conditions is false, then the designer must either

redesign the software tasks (i.e., reapply DARTS) or change the number of processors in

the system specification. Redesigning the software is the logical first step; changing the

system specification should only be done as the last resort.

Note that function A21 only determines if the given set of tasks cannot be scheduled

and does not guarantee that the tasks are, in fact, schedulable. Hence, the algorithm used

to determine unschedulability is a necessary condition, not a sufficient condition. The only

way to know for certain if the tasks are schedulable is to apply function A22 and actually

create a schedule of the tasks.

3.3.2 Create Schedule. Function A22, Create Schedule, is performed after the

design passes Level A21. This function has five interface arrows: a control arrow labeled

schedulable; two input arrows labeled num processors and task info; a. mechanism arrow

labeled scheduler info; and an output arrow labeled task schedule. The interface arrows.

labeled schedulable, num processors and task info are defined above. The mechanism arrow,

scheduler info, refers to the type of task scheduler used in the RTE. The output arrow,

task schedule, is the schedule of tasks which were developed in the DARTS design.

3.3.3 Model Entry Calls Function A23, Model Entry Calls, has four interface

arrows: a control arrow labeled task schedule which is a schedule of the tasks which were

developed in the DARTS design; an input arrow labeled task info which includes the

task names, periods, execution times, etc.; and two output arrows labeled entry trace anld

performance stats. The entry trace is a sequence of the entry points and the performance

stats are statistics describing the design performance.

The next chapter describes Model Entry Calls in detail after providing background

information on Ada entry points and arrival distributions.
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IV. Model Entry Calls

4.1 Ada Entry Points

There are two main distinctions among entry points. The first distinction is between

single entries and entry families. A single entry queues its calls according to the FCFS

discipline. An entry family queues its calls according to the index associated with the call,

where the index can denote the priority of the call. Entry families represent a hierarchy

of queues; each index has its own entry queue which uses the FCFS discipline. Thus, calls

can be accepted from the queues in the order of their index which allows a priority scheme

to be developed.

The second distinction is among timed, conditional, and simple entries. A timed entry

allows balks; this call is cancelled if the rendezvous does not begin within the specified time.

A conditional entry is a special case of the timed entry with the time limit set to zero.

The call is cancelled unless the rendezvous can occur immediately. The simple entry can

be thought of as a timed entry with a time limit of infinity. A simple call is not revoked

once it has been issued.

Combining the above categories gives six types of entry points: single timed, single

conditional, single simple, family of timed, family of conditional, and family of' simple

entries. Table 4.1 describes the different types of entries and how they will be modeled.

.J.2 Modeling Assumptions

The interarrival and service times will be modeled by the exponential distribution

based on the following assumptions:

* the current arrival/service time is independent of the last arrival/service; and

* the arrival/service time is independent of the number in the entry queue.

These assumptions appear to be valid for the Ada Tasking Model because the time

since the last arrival and the time in service refer to real or continuous time nd not

to computer processing time which may be affected if the task is swapped out o[' the
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Table 4.1. Modelin Entry Queues
Entry Queueing Service
Type Model Algorithm Balks
single M/M/1 FCFS no
simple
single M/M/i FCFS yes
timed
single M/M/1 FCFS yes
conditional
family M/M/m FCFS no
simple
family M/M/m FCFS yes
timed
family M/M/m FCFS yes
conditional.-

processor. Additionally, these assumptions are frequently used, as demonstrated by the

following quote from Trivedi (25:114):

Thus the following random variables will often be modeled as exponential:

1. Time between two successive job arrivals to a computing center (often called
interarrival time).

2. Service time at a server in a queuing network; the server could be a resorce
such as the CPU, I/O device, or a communication channel.

Therefore, the entry queues will be modeled using M/M/1 queues. The term

"M/M/I" comes from Kleinrock (16) who uses the notation "A/B/m/K/M" to describe

queueing systems. The "A" represents the arrival distribution and "B" represents the

service distribution. The following quote from Kleinrock further explains the notation.

rn-Server queue with A(t) and B(z) identified by A and B, respectively, with
storage capacity of size K, and with customer population of size M (if any of
the last two descriptors are missing they are assumed to be infinite) (16:399)

In this instance, the queues are single servers with the interarrival distribution, A4 (1).

and service distribution, B(z). Both of these distributions are described as H which means
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that they denote the exponential distribution. The Probability Distribution Function

(PDF) of the exponential distribution is (16:65):

X(t) = 1 - e-At for t 0 0 (4.1)

The Probability Density Function (pdf) is, therefore (16:65):

X(t) d (X(t)) = Ae-At for t 0 (4.2)
dt

The exponential distribution is especially interesting due to its memoryless property

which states that, "the past history of a random variable that is distributed exponentially

plays no role in predicting its future" (16:66). This property is represented by the following

equation, where,

P[X < t + SI X > s] = P[X < t] (4.3)

Thus, the arrival time is independent of when the last arrival occurred and the service

time is independent of the time already spent in service. Another assumption is that tie

system is in steady state.

The assumption of M/M/1 queues also keeps the solution of the queueing network

tractable, as illustrated by the following quote:

When one relaxes the Markovian assumptions on arrivals and/or service times,
then extreme complexity in the interdeparture process arises not only from its
marginal distribution, but also from its lack of independence on other state
variables. (16:155)

4.2.1 Arrival Distributions. Calls arrive at the entry queues according to either

a random or general distribution. (For the purposes of this research, a general ditrlmbuLion

refers to a non-random distribution, e.g., a deterministic distribution.) In addition, calls

may or may not repeat. Repeating, or cyclic, calls may occur with either a random or
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general distribution, both of which may repeat at a known frequency. Non-repeating calls

are also based upon random or general distributions and can be thought of as repeating

calls with an infinite period.

Random calls can be made from either the hardware or the software; general calls can

only be made from the hardware because Ada offers no timing guarantees for the software

entry calls. Additionally, even though the hardware can make entry calls at a specified

time, the Ada tasking facility accepts these calls in an arbitrary manner (8:9-13) (15:285).

Therefore, arrivals to the entry queues are assumed to be random.

4.2.2 Service Distributions, Regardless of the arrival pattern, the service t hiue
of the entry calls is random because of the inherent randomness (nondeterministic nature)
of select statements within Ada's tasking facility. "If several alternatives can be selected,

one of them is selected arbitrarily" (8:9-13).

The assumption of random service is not as crucial as the assumption of random

arrivals. M/G/1 queues can still be modeled using the M/M/1 queueing network equations

which are used in this research (17:226).

4.2.3 General Distributions. If the Ada tasking facility were to be changed

in the future so that it incorporated timing guarantees, then the followhig miodifications

would be necessary to the model: model general arrival times witl the G/NI/I qupeue:

model general service times with the M/G/1 queue; and model both general arrivals and

service times by the G/G/i queue.

4.3 Entry Call Model

Figure 4.1 depicts level A23 of the Ada Tasking Model design. This level has six

activities: Get Entry Precedence Requirements; Create Entry Trace; Create Network of

Entry Queues; Model Arrival Patterns; Solve Network Equations; and Gather Performance

Statistics. The following sections provide a summary of the six functions. For more details,

see Appendix B.
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4.3.1 Get Entry Precedence Requirements. Function A231, Get Entry

Precedence Requirements, has three interface arrows: a control arrow labeled task sched-

ule; an input arrow labeled task info; and an output arrow labeled precedences. The arrow

task schedule is a schedule of the tasks designed in DARTS. The task information includes

the task names, periods, execution times, precedences, etc. The arrow precedences refers

to the NxN matrix of dependencies which is developed from the precedence information

contained in task info.

The precedence requirements are input by the designer in the form of task info. The

precedences are transferred to an NxN matrix, where N Is the number of entry points. The

matrix contains Boolean values, with dependencies denoted by TRUE. The function, Get

Entry Precedence Requirements reads in the precedence requirements and outputs an NxN

matrix depicting those precedences.

4.3.2 Create Entry Trace. Function A232, Create Entry Trace, has two hi-

terface arrows: a control arrow labeled precedences, which is output from function A231

(Section 4.3.1) and an output arrow labeled entry trace, which is a sequence of entry points.

The function, Create Entry Trace, creates one possible sequence of entry calls based

upon the precedence matrix. The entry trace will be created using a CSP-like language:

the alphabet consists of the entry points. Another use for the entry trace is to show

whether or not deadlock occurs within the system. Section 4.3.6 details the uses of the

entry trace.

4.3.3 Create Network of Entry Queues. Function A233, Create Network

of Entry Queues, has three interface arrows: a control arrow labeled precedences, which

originates from Function A231; an input arrow labeled task info, which was described

in Section 4.3.1; and an output arrow labeled network, which is the queueing network.

The queues represent the entry points, i.e., the accept statements. The queneing network

will be modeled as a network of M/M/1 queues. The connections between the separate

queues are contained within an NxN matrix Q. This matrix is similar to the precedence

matrix described above except that the entries are values between 0 and 1 which denote
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the probability of leaving queue i (represented by row i) and entering queue j (represented

by column j).

The function, Create Network of Entry Queues, reads in the precedences matrix

and the task info and produces a queueing network matrix depicting the interconnections

between the entry queues.

4.3.4 Model Arrival Patterns. Function A234, Model Arrival Patterns, has

four interface arrows: a control arrow labeled network, which originates from function

A233; an input arrow labeled task info, which was described in Section 4.3.1; an input

arrow labeled task schedule, which originates from function A22; and an output arrow

labeled arrivals, which describes the arrival distributions for each of the queues.

The function, Model Arrival Patterns, assigns an arrival distribution to each of the

entry queues. As previously stated, this research assumes the arrival patterns can be

modeled using the exponential distribution. If future changes are made to the Ada tasking

facility wh:01 nallify these assumptions, then this segment of the model will need to be

redefined. However, as mentioned previously, this model is valid for either M/M/1 or

/G/1 queueing networks.

4.3.5 Solve Network Equations. Function A235, Solve Network Equaltions, has

four interface arrows: a control and input arrow labeled arrivals, which originates f'loii

Function A234; an input arrow labeled network, which originates from Function A2:33: and

an output arrow labeled solution, which is a matrix of equations that solve the que(ncin"

network. The function, Solve Network Equations, reads in the network matrix and the

arrival distributions and finds the arrival rates (A\) and the service rates (i).

Because the queues are assumed to be M/M/1, the network can be modeled using

Jackson network equations (16:149-150). Jackson's method allows open or closed networks

and feedback. The individual queues are referred to as "nodes" and the arrivals as "cus-

tomers." Arrivals from outside the system arrive according to the Poisson distribution

(e.g., interarrivals have exponential distributions) at the rate f'i. Customers move from
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node j to node i with probability rji. (Note that the probability of a customer leaving

node j and feeding back to the same node j is rij.)

The total arrival rate of customers to node i is found by summing the outside ar-

rivals and the internal arrivals which arrive from nodes within the network. The following

equation represents the total arrival rate for node i.

N
Xi =--- Yi + E Airji for i -- 1, 2,..., N (4.4)

j=1

A network of N nodes will have N equations of this form.

4.3.6 Gather Performance Statistics. Function A236, Gather Performance

Statistics, has three interface arrows: a control arrow labeled solution, which is the output

from function A235; a control arrow labeled entry trace, which is the output from function

A232; and an output arrow performance stats, which describes the performance statistics

generated by the model developed within this thesis.

The function, Gather Performance Statistics, gathers and calculates queueing statis-

tics, such as:

* arrival rate (A)

* service rate (ps)

a utilization of queues (p)

* time in queue (T)

* number in queue (_q)

* service time (S)

* wait time (W)

The statistics gathered from the queueing network are averages. See Appendix B for the

equations.

The entry trace generates a sequence of the entry calls. The remainder of the infor-

mation gained from the entry trace depends upon the implementation of the trace. This
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model assumes that the trace will be implemented as print statements within the program

and that the entries will be time stamped. Thus, information gathered from the entry

trace, in addition to the list of entries, is the number of times each entry was called, when

the calls were made, and general information for the interarrival and service distributions.
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V. Validation

This chapter contains the first attempt at validating the performance model of Ada

tasking. The validation compares the results of applying the Ada Tasking Model with

a queueing simulation and an Ada implementation. The Dining Philosophers problem

was chosen to demonstrate the validation because it is a well-defined problem requiring

concurrent programming.

The life cycle for this validation, shown in Figure 5.1, parallels the life cycle defined

in Figure 1.1. The numbers in Figure 5.1 correspond to the sections where each of the

phases are developed. A general application of the model is contained in Section 5.? and

Section 5.6 contains the application for a specific case.

Implementation
r-------------------------------- n

Simulate
I Queueing

Model in

Requirements

Design

DiniI DARTS Apply

Dingno Design Ada Taskin .

Philosophers Model

Figure 5.1. Validation Life Cycle

5.1 The Dining Philosophers

The Dining Philosophers, first presented by E.W. Dijkstra (10:83-99) (13:75-81), is

a classic synchronization problem which is used to benchmark concurrent programming

facilities because it illustrates deadlock and starvation problems among shared resomlrces.

boare describes the Dining Philosopher problem as follows:
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In ancient times, a wealthy philanthropist endowed a College to accommodate
five eminent philosophers. Each philosopher had a room in which he could
engage in his professional activity of thinking; there was also a common dining
room, furnished with a circular table, surrounded by five chairs ... To the left
of each philosopher there was laid a golden fork, and in the centre stood a large
bowl of spaghetti, which was constantly replenished. (13:75)

In order to eat, the philosopher picks up the forks closest to him, one at a time. Once

the philosopher obtains both forks, he eats until he is no longer hungry, puts down the

forks, and goes away to think until he is hungry again and then the whole process repeats.

Once a philosopher has possession of a fork, he will not relinquish it until he has finished

eating, causing potential problems with deadlock and starvation.

Deadlock occurs when all five philosophers decide to eat at the same time and each

picks up one fork. None of the philosophers will release his fork until he has eaten, but

none of the philosophers can eat until he gets another fork; the philosophers are deadlocked.

Starvation is slightly different from deadlock in that one or more of the philosophers obtains

both forks and eats while another is never able to pick up both forks and, therefore, starves

to death.

The Dining Philosopher implementation used to validate the Ada Tasking Model

employs a host to ensure that deadlock will not occur. Each philosopher must ask the host's

permission to enter and leave the dining room and the host allows only four philosophers

in the dining room at a time; thus, ensuring that at least one of the philosophers will be

able to eat at a time. Deadlock has been avoided (10:88). Note that starvation may still

occur if one of the philosophers sits at the table and never gets both forks.

5.2 Design Approach for Real-Time Systems Design

Figure 5.2 depicts the state flow for one of the philosophers in the Dining Philosophers

problem. Once a philosopher enters the system he continues to eat and think until he dies.

The following sections describe the DARTS design for the Dining Philosophers problem

and describe the task information required to apply the tasking model.
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Room Fr

Die Think ick tip

Put downPut down

Figure 5.2. Flow Diagram for Dining Philosopher
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5.2.1 DARTS Design. Figure 5.3 shows the DARTS diagram for one of the

philosophers. Enter Dining Room, and Leave Dining Room have been placed in the task

Host. Pick Up Left Fork, Pick Up Right Fork, Put Down Right Fork, and Put Down

Left Fork have been condensed to Pick Up Fork and Put Down Fork in task Fork. The

Philosopher task makes calls to Host and Fork. Note that there are five fork tasks, five

philosopher tasks, and one host task.

Fork

pick up

enter/ put down

H ost/ Philosopher i

leave pick up

put down

Fork i t1 I

Figure 5.3. DARTS Design for Philosopher i

Before eating, each philosopher must ask the host's permission to enter the dining

room by issuing the call Enter. The host will only allow four philosophers into the dining

room at a time so that deadlock will not occur.
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After entering the dining room, the philosopher sits in his chair and tries to pick up

the fork on his left (Fork i) and the fork on his right (Fork i E 1). Table 5.1 shows the

left and right fork numbers for each of the philosophers and Figure 5.4 shows the relative

positions of the seats and the forks. (Note, the symbol $ is used to denote modulo 5

addition (13:75).)

Table 5.1. Fork Numbering
Philosopher Left Fork Right Fork

0 0 1
1 1 2
2 2 3
3 3 4
4 4 0

Figure 5.4. Fork Diagram for Dining Philosophers
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After eating, the philosopher puts down both of his forks and notifies the host that

he is leaving by issuing the call Leave. The calls Enter and Leave allow the host task to

keep track of the number of philosophers currently in the dining room.

5.2.2 Task Information. There are eleven Ada tasks: one Host task; five Fork

tasks; and five Philosopher tasks. The Host task has two Ada entry points: enter and

leave. Each Fork task has two entries: pick up and put down. The Philosopher tasks

have no entries; each philosopher places calls to the Host and Forks. The twelve entries are

enumerated in Table 5.2. Philosopher i repeats the eating-thinking cycle with frequency fi.

The precedence requirements are defined by the order in which the entry calls can

be made. The following list uses CSP notation to show the order of calls for Philosopher i:

Philosopheri = (i.enter i.pick up fork i - i.pick up fork (i '@ 1)
- i.put down fork (i E 1) - i.put down fork i

i.leave - Philosopheri)

The symbol <. is the precedence operator where i <. j means that i is depviit

upon j. Every entry point is dependent upon all the other entry points in steady state

because the problem is circular. The precedences shown here are partial precedences that

only describe the previous precedence. The partial precedences for Philosopher i are slown

below.

9 enter < leave

* pick up fork i < enter

* put down fork i <. pick up fork i

* leave < put down forks

In addition, each of the forks may have the following precedences, depending upon

which philosopher is eating.

* pick up fork 1 <. pick up fork 0 (for Philosopher 0)
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1 pick up fork 2 < pick up fork 1 (for Philosopher 1)

* pick up fork 3 < pick up fork 2 (for Philosopher 2)

* pick up fork 4 <. pick up fork 3 (for Philosopher 3)

* pick up fork 0 < pick up fork 4 (for Philosopher 4)

* put down fork 0 < put down fork 1 (for Philosopher 0)

* put down fork 1 < put down fork 2 (for Philosopher 1)

* put down fork 2 <. put down fork 3 (for Philosopher 2)

* put down fork 3 < put down fork 4 (for Philosopher 3)

* put down fork 4 < put down fork 0 (for Philosopher 4)

5.3 Application of the Ada Tasking Model

This section demonstrates how to apply the tasking model. The steps of the model

are:

* Get Precedence Requirements;

* Create Entry Trace;

o Create Network of Entry Queues;

* Solve Network Equations;

* Gather Performance Statistics.

These steps are defined in Figure 4.1 in Chapter IV. Notice that "Model Arrival

Patterns" was not included because the model assumes the arrivals are distributed expo-

nentially.

5.3.1 Get Precedence Requirements. The entry points and their reference

numbers are shown in Table 5.2. These numbers will be used as matrix indices throughout

the remainder of the application of the model. Note that each Ada entry point is modeled

as a separate queue.

5-7



Table 5.2. Entry Points
Entry # Entry Name

1 Enter
2 Pick Up Fork 0
3 Pick Up Fork 1
4 Pick Up Fork 2
5 Pick Up Fork 3
6 Pick Up Fork 4
7 Put Down Fork 0
8 Put Down Fork 1
9 Put Down Fork 2
10 Put Down Fork 3
11 Put Down Fork 4
12 Leave

The procedure Create Precedence Matrix from Section B.7.1 in Appendix B was used

to transfer the task information into a NxN matrix; N=12 in this case because there are 12

entry points. The precedence matrix, shown in Figure 5.5, contains Boolean values, such

that T = True and F = False. (The False entries have been omitted from the figure in

order to make it more readable.) The "T" in the matrix represents a precedence betwece

the column and the row, i.e., i <. j

1 2 3 4 5 6 7 8 9 10 11 12
1 T T T T T T T T T TIT
2 T I TT3 T T T

4 T T T
5 T T T
6 T T' T
7 T T

8 T T
9 T T
10 T T
11 T T

12 T

Figure 5.5. Precedence Matrix

5-8



5.3.2 Entry Trace. This section is based upon the Dining Philosophers example

in Hoare's text (13:75-81). There are three basic tasks in the implementation of the dining

philosophers: host, philosophers, and forks; thus, there are three alphabets which are

shown below with their respective behaviors.

5.3.2.1 Philosophers. Each Philosopher may enter or leave the dining

room and pick up or put down forks. The alphabet for the philosophers is:

aPhilosopheri = {i.enter, i.eave, i.pick up fork.i, i.pick tip fork.(i e 1),

i.put down fork.i, i.put down fork.(i ED 1))

A sample of Philosopher i's behavior is shown below.

Philosopheri = (i.enter -- i.pick up fork.i --- i.pick up fork.(i e 1) --

i.put down fork.(i B 1) - i.put down fork.i
-- i.leave -o Philosopheri)

5.3.2.2 Forks. Each Fork can be picked up or put down. The alphabet for

the forks is:

a Forki = {i.pick up fork.i,(ie 1).pick up fork.i,

i.put down fork.i, (i e 1).put down fork.i}

The fork's behavior is:

Forki = (i.pick up fork.i -.- i.put down fork.i --- , Forki I
(i e 1).pick up fork.i --- (i e 1).put down fork.i - Forki)

5.3.2.3 Host. The host allows the philosophers to enter or leave the dining

room. The alphabet for the host is:

a Host = U!=o{i.enter, i.leave}
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The host only allows philosophers to enter if the dining room is empty because there are

no philosophers to leave.

Hosto = (i.enter -- Host,)

The Host will allow the philosophers to enter or leave when there are 1 to 3 philosophers

in the dining room.

Hosti = (i.enter -p Hosti+i I i.leave --- Hostj-,) for j E {1, 2, 3}

When four philosophers are in the dining room, the host will only allow philosophers to

leave since four is the maximum number allowed in order to prevent deadlock.

Host 4 = (i.leave --- Host3 )

5.3.2.4 Concurrency. The components work together concurrently and

are described as follows:

Philosophers = (PhilosopheroIPhilosopherIllPhilosopher2llPhilosopher3 IPb iloso/,II tc,)

Forks = (Forkoll Fork, llFork2 llFork3liFork4)

Dining Philosophers = (Philosophers II Forks 11 Host)

5.3.2.5 Trace. A CSP-like trace can be created either manually or via

automation. The trace for this implementation was created by embedding commands in

the Ada program. Both the Ada code and entry trace are located in Appendix C., A

portion of the trace is shown in Figure 5.6.

5.3.3 Create Network of Entry Queues. The next step in applying the Ada

Tasking Model is to create the entry queue network. The queueing network may be drawn

manually if the number of queues is small; otherwise, an NxN matrix is created, where the

indices represent the entry queue numbers. Figure 5.7 shows the queueing network for the

entry queues. Although this network only has sixteen queues, it is still unwieldy to draw;

therefore, matrices are used for this model because they are much easier to manipulate

and store on a computer.
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Philosopher 0 enters dining room -. Philosopher 0 picks up fork 0 -
Philosopher 0 picks up fork 1 --+ Philosopher 1 enters dining room -
Philosopher 2 enters dining room ---* Philosopher 3 enters dining room
Philosopher 2 picks up fork 2 - Philosopher 3 picks up fork 3
Philosopher 3 picks up fork 4 Philosopher 0 puts down fork 1
Philosopher 1 picks up fork 1 - Philosopher 0 puts down fork 0
Philosopher 0 leaves dining room -- Philosopher 4 enters dining room
Philosopher 3 puts down fork 4 - Philosopher 4 picks up fork 4
Philosopher 3 puts down fork 3 - Philosopher 2 picks up fork 3
Philosopher 4 picks up fork 5 ---+ Philosopher 3 leaves dining room
Philosopher 2 puts down fork 3 - Philosopher 4 puts down fork 5
Philosopher 2 puts down fork 2 - Philosopher 1 picks up fork 2
Philosopher 4 puts down fork 4 - Philosopher 2 leaves dining room
Philosopher 4 leaves dining room - ...

Figure 5.6. Entry Trace for Dining Philosophers

The rji matrix, shown in Figure 5.8, represents the probabilities of transitionilg

between queues, e.g., rji is the probability of moving from queue j to queue i. If rji equals

zero, then the transition between the queues cannot occur. The queue interconnections

are determined from the precedence matrix in Figure 5.5 and the ri values are calcullated

in Section 5.3.4.

Note that the matrix has been expanded from 12x12 to 16x16 matrix. The Leave

queue will be used to model the thinking time for the philosophers; therefore, the Leave

queue was expanded from one to five queues. This was done so that the queueing model

could allow the philosophers to have their own "think" queue; thus, allowing the possibility

for independent thinking rates.
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Figure 5.7. Queueing Network for Dining Philosophers
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5.3.4 Solve Network Equations. This section calculates the rji probabilities

for the general case; Section 5.6 solves the equations for a specific case. In order for the

queueing network to be in steady state, no deaths will occur; therefore, the probability of

leaving queues 12-16 and entering queue 1 is equal to 1.

r12,1 = r13.1 = r14,1 = ri5,1 = r 1 6 , 1 = 1

Note that this network is a closed system with five customers and that the external

arrivaLs ('yi) are 0 because the system is closed. The system has sixteen queues; therefore,

there are sixteen simultaneous equations to solve of the form:

N

Ai -/i + "rjiAj for i -1,2,..., 16 (5.1)
j--I

Because the 's are zero, this set of equations does not have a unique solution. However.

A is equal to the sm f all the philosopher's arrival rates and can be substituted into the

following set of equaLions to gain a unique solution.

At = r 12,1A12 + r 13,1A13 + r 14 ,1A14 + rl 5 ,lA 15 + r 16 ,1A16

A2 = rl,2A1 + r6,2A6

A3 r1 ,3 A1 + r2 ,3 A2

A4 = r1 ,4 A1 + r3 ,4A3

As = r1 ,sA1 + r4,5A4

A6 = r 1,6A1 + r5,6As

A7 = r 2,7A2 + r8,A 8

A8  r3,sA3 + r9,SA9

A9 = r4 ,9 A4 + r10 ,9 A10

Ao = rsjoAs + r11,1oAll

A11 - r6,1 IA 6 + r7,11A7

A12 = r7 ,12A7

A13 = rs,13As

A14 = r9 ,14A9

As15 = r10,i10

A16 "- rl,16AlI
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5.3.5 Calculating the rifs. The rji's denote probabilities of transitioning be-

tween queue j and i and the sum of the probabilities leaving a queue is 1. Note that each

of the rows of the rji matrix in Figure 5.8 denotes the probability of leaving a specific

queue, hence, the rji's in each row must sum to 1. Thus, the following equations may be

obtained from the rjj matrix.
rl,2 + rp,3 + r1,4 + rj,5 + r, = 1 probability of leaving queue 1

r2,3 + r2,7 = 1 probability of leaving queue 2

r3,4 + r3,8 = 1 probability of leaving queue 3

r4,5 + r 4 ,9 = 1 probability of leaving queue 4

rs,6 + rs,jo = 1 probability of leaving queue 5

r6,2 + r6,11 = 1 probability of leaving queue 6

'r7,11 + rT,12 = 1 probability of leaving queue 7

r8,7 + r8,13 = 1 probability of leaving queue 8

r 9 ,8 + r9,14 = 1 probability of leaving queue 9
rjo,9 + ro,,s = 1 probability of leaving queue 10

r1io + r11,16 = 1 probability of leaving queue 11

Each of the philosophers completes an eating-thinking cycle with frequency fi. Thus,

the arrival rate at queue 1 (A1) is equal to the sum of these frequencies, i.e., A1 = Fj o fi.

The relationship between the frequencies is arbitrary, so assume that the frequency at

which the philosophers eat is related by the following equation:

fo = LI = 12 = f3 = 14(.2
Xl X2 3 .4

where the xi's are arbitrary constants. This relationship allows a general solution to be

developed for each of the rii probabilities.

5.3.5.1 Probabilities of Leaving Queue 1. The following equation rep-

resents the sum for all the probabilities of leaving queue 1.

rl,2 + rl,3 + rl, 4 + rl,s + rl,6 = 1 (5.3)
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In order to solve for the rji's, it is necessary to understand that each of these rji's represent

the probability of a philosopher selecting his left fork. For example, rl,2 represents the

probability that Philosopher 0 leaves queue 1 and picks up Fork 0.

Each of these probabilities are mutually exclusive and depend upon the rate at which

the philosophers complete their eating-thinking cycle. The probability that Philosopher 0

leaves queue 1 is equal to his eating-thinking frequency (f1) divided by the sum of all

the eating-thinking frequencies (A1). Therefore, Philosopher 0 leaves queue I with the

probability of:

fA fo fo
I\ I E&= o A fO +h 1 + f 2 +f 3 +f (h

This fraction can be simplified by exploiting the relationship between the eating-

thinking frequencies.
fo= f - -== L

XI X2 X3 X4

Thus,

ft = xIfo

fh = x2fo

f3 = x3fo

h = X4f

Substituting these values into Eq 5.4 yields the following equation:

r1,2 -- (O+zlfO+X o+ 3 oz.o) = I-t+ 2+X 3+Z 4 ) ----

Likewise, the probabilities that Philosophers 1-4 leave queue 1 and pick up their left Forks

are:

rl1,3 = "  r
"0 = 1+z+X2+X3+Z4

r 14 =- 4 +- 2

",0 f ,  1+ZI+X2+X3+X4

= I' 1+I+X2+X3+X4
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5.3.5.2 Probabilities of Leaving Queue 2. Queue 2 represents the entry

Pick Up Fork 0 and is called by either Philosopher 0 or Philosopher 4. Philosopher 0 leaves

queue 2 and enters queue 3 with frequency fo. Philosopher 4 leaves queue 2 and enters

queue 7 with frequency f4. Therefore,

r 2,3 = 3 = .X

= 2T= It

5.3.5.3 Probabilities of Leaving Queues 3-6. The queues 3-6 also

represent picking up a fork and the probabilities are derived similarly to those above.

Therefore,

r3 = r3,8  = i  =r3,4 =,+JT = 7T =-1+X2
r4,5 = Tll-2 r4,9- l  = T '+ 2 = X---- --

X1 +X2 L49 T

,6 2+Z3 6,10 = " "1 X2+X3
L6, X2X _T h+ - , x- -

r =4 r 6 ,1 1 = = X4

5.3.5.4 Probabilities of Leaving Queues 7-11. Queues 7-11 represent

putting down forks. The following equations represent the probabilities of leaving these

queues.

7,12 = 70 T= 1+ 4 "7,11 7 =X;

r8 ,1 3 = 1_= o.t... = -

=, -+12 + r9,8 =IZ 2 X1+X2

2 Z3 10,9 " 2+3 +3

11l,16 = 04 = 7- - ' 3+X,

5.4 SLAM II Simulation

Now that the rji probabilities have been calculated, it is possible to create a queueing

model simulation in SLAM II (Simulation Language for Alternative Modeling) which is

a FORTRAN-based simulation language (20). The SLAM II model has sixteen queues,

wlere each queue represents one Ada entry point. (See Table 5.2.) One important differ-

ence between SLAM II and general queueing theory is that SLAM II uses times, whereas,

queueing theory uses rates. However, the rate is simply the inverse of the time period.
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The realistic service time for picking up and putting down forks can be approximated

by zero. The time of interest for the forks is not the service time, but rather the wait time

when the fork is in use by another philosopher. Thus, instead of modeling the service times

as zero, the time will be used as part of the delay due to eating.

There are four steps necessary for the eating process:

* pick up left fork;

e pick up right fork;

* put down right fork: and

* put down left fork.

The eating service time will be divided between the pick up left fork and pick up

right fork queues, such that the sum of the service times equals the total time spent eating.

This allows a more realistic representation where the philosophers may be requiled to wait

to pick up their forks. The queues for putting down the corks will have zero service times

because the philosophers do not have to wait in line to put down the forks.

The queue where the philosopher notifies the host that he is leaving the dining room

is used to model the thinking time. Each philosopher has his own thinking queue so that

it is possible for all the philosophers to think concurrently and at differing rates.

The code and simulation output are contained in Appendix C. The statistics from

the SLAM II simulations are contained within Section 5.6. The next section describes the

Ada program for the Dining Philosophers.

5.5 Ada Implementation

The Ada implementation contains an array of five fork tasks, an array of five philoso-

pher tasks, one host task, and two tasks used to collect statistics while the Ada program is

executing. The collection tasks are used because I/O on a VERDIX system is a sulbprocess

of the task and will suspend the task, thus, distorting the runtime statistics. The Ada code

and entry trace are located in Appendix C. The statistics gathered from the Ada program

and from the SLAM II simulation are located in the next section.
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5.6 Dining Philosopher Solution

5.6.1 Solve Network Equations. The philosopher eating frequencies are related

by the following equation:

fo = fI = =3 = 1 (5.5)
Z1 X2 X3 X4

where the xi's are arbitrary scaling constants. The sum of all the frequencies is equal to

the arrival rate at Queue 1 in the queueing network:

4A1 = EA (5.6)
i=0

The solution presented here assumes that all the philosophers think at different rates. .ch6

that,

=, 2

X2 3

X3 =4

X4 5

Each philosopher eats for approximately 1 hour. Let Philosopher 0 think for 9 hours

and eat for 1 hour; therefore, his eating-thinking cycle takes approximately 10 hours and

repeats with frequency fo = 1. Plugging this value and the above xi values into Eq 5.5

yields the following results. (The hour time unit is actually modeled as seconds.)

fo =1f0--
/= k

f2 10

13 5

h4 I

and
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The rji probabilities shown below were calculated using MACSYMA. The batch file is

contained in Appendix C.

rl,2 = 15

r1,3 = 2

r1,4 =

rl,5  Us

ri,6= r3,8 = r8 ,7 - 3

r3,4 r r8 ,1 3 = 3

r2,3 r p7 , 12 - I

r2,7 = r7 ,1 1 =5
r4,5 r 9,14 =

5r4 ,9 " 79,8 =2

r5,6  rlo,15 - -7

3rs,1 o r10,9 = 7

r6,2 = r 1 1 ,16 = 9

r6,11 r11,1o =

r12,1 r13,1 = r14,1 ris,1 -- r16,1

The sixteen simultaneous equations shown below are solved by substituting in the

rji values and A,.

Al = r 12,1 A12 + r 1 3 ,1 A1 3 + r 1 4 ,1A1 4 + r1S,iAls + r16 ,1 A1 6

A2 = rl, 2 A1 + r6 ,2 A6

A3 = r 19 3 A1 + r 2,3 A2

A4 = r1 ,4 A1 + r 3 ,4 A3

As = rl,5 A1 + r 4,sA4

A6 = r1 ,6 A1 + rsA 5

A7 = r 2,7 A2 + r8,7A8

A8 = r3 ,8A3 + r9,SA 9

A9 = r4,9A4 + r10 ,9j10

A1o = r5s1oAs + rn,oAnl

All = r 6,11A6 + r7 ,1 IA7

A1 2 = r 7 , 12 A 7

A1 3 = r 8 ,1 3 A8
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A1 4 - r 9 ,1 4 A9

A15 1-= 0,1SA10

A16 =r1,16A11

The resulting A values are:

3
-s

A 3  A 8 =.-

A4 = A9 =1

As = A10 = 1

A6 = All = 10

A12 = 1

A13 =

1\14 = 10

2
A15 = 5

1
A16 =

5.6.2 Gather Performance Statistics. The statistics of interest for the DiIiImg

Philosophers are the arrival rate (A), service rate (,u), queue utilization (p), and service tin,,

(S). Note that the simulated values are often less than the theoretical values because the

equations used to calculate the theoretical values are based upon the assumption that there

is an infinite population when, in fact, there are only five entities circulating throughout

the queueing network. The theoretical A's, p's, p's, and S's are shown in Table 5.3.

The utilization factor, p, is the "fraction of time that a server is busy" (16:19), i.e.,

the "ratio of the rate at which 'work' enters the system to the maximum rate (capacity)

at which the system can perform this work" (16:18). Symbolically,

p = A (5.T)
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Table 5.3. Expected Queueing Statistics

Queue A p p S
1 1.5 2.000 0.75 0.5
2 0.6 1.000 0.60 1.0
3 0.3 1.000 0.30 1.0
4 0.5 1.000 0.50 1.0
5 0.7 1.000 0.70 1.0
6 0.9 1.000 0.90 1.0
7 0.6 - - 0.0
8 0.3 - 0.0
9 0.5 - - 0.0

10 0.7 - - 0.0
11 0.9 - - .0
12 0.1 0.111 0.90 9.0
13 0.2 0.250 0.80 4.0
14 0.3 0.429 0.70 2.3
15 0.4 0.667 0.60 1.5
16 0.5 1.000 0.50 1.0

where m is the number of available servers, A is the queue arrival rate, and it is the queue

service rate. All the queues are single server queues; therefore, m = 1. Queues 7-11, put

down forks, have zero service times and will not be included in this statistical analysis.

Table 5.4 shows the simulated and theoretical utilization factors for the queues.

The service rates for the queues are used to approximate the eating and thinking

times. Each eat cycle has four steps (pick up left fork, pick up right fork, put down right

fork, and put down left fork) and the pick up left and right fork queues are used to model

the eating time. Each pick up fork queue will have a service time equal to the eating time

in order to simulate the wait time for a philosopher if the fork is in use. In the worst case,

a philosopher will have to wait for both forks.

There are five thinking queues in order to allow the five philosophers to think con-

currently. Tables 5.5 and 5.6 contain the average eating and thinking service times for the

SLAM II simulations and the Ada implementation. Table 5.7 contains the eating-thinking

cycle times.
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Table 5.4. Utilization Factors

Expected SLAM II %
Queue Value Average error

1 0.75 0.2265 69.8
2 0.60 0.0939 84.4
3 0.30 0.0945 68.5
4 0.50 0.0922 81.2
5 0.70 0.0916 86.9
6 0.90 0.0934 89.6
7 0.00 0.0000 0.0
8 0.00 0.0000 0.0
9 0.00 0.0000 0.0

10 0.00 0.0000 0.0
11 0.00 0.0000 0.0
12 0.90 0.8461 6.0
13 0.80 0.3782 52.7
14 0.70 0.2152 69.3
15 0.60 0.1371 77.1
16 0.50 0.0929 81.4

Table 5.5. Thinking Service Times

Expected SLAM II % Ada %
Value Average error Average Error

Phil 0 9.000 9.139 1.52 9.486 5.12
Phil 1 4.000 4.085 2.10 4.346 7.96
Phil 2 2.333 2.325 0.36 2.391 2.41
Phil 3 1.500 1.481 1.27 1.571 4.52
Phil 4 1.000 1.003 0.30 0.933 6.70

Table 5.6. Eating Service Times

Expected SLAM II % Ada %
Value Average error Average Error

Phil 0 1.000 1.051 5.1 1.080 8.0
Phil 1 1.000 1.043 4.3 1.101 10.1
Phil 2 1.000 1.051 5.1 1.069 6.9
Phil 3 1.000 1.094 9.4 1.044 4.4
Phil 4 1.000 1.099 9.9 1.009 0.9
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Table 5.7. Average Eating-Thinking Cycle

Expected SLAM II % Ada %
Value Average error Average Error

Phil 0 10.0 10.190 1.86 10.566 5.36
Phil 1 5.0 5.128 2.50 5.447 8.21
Phil 2 3.3 3.375 1.24 3.460 3.66
Phil 3 2.5 2.574 2.87 2.615 4.40
Phil 4 2.0 2.103 4.90 1.942 2.90

5.7 Discussion of Results

This section presents an overview of the results gained from applying the Ada Tasking

Model, SLAM II model, and the Ada implementation.

The simulated queue utilization values did not match the expected values because

there were only 5 entities circulating within the network. Finite population queueing

networks are "self-regulating," meaning that "when the system gets busy, with many of

these customers in the queue, then the rate at which additional customers arrive is in fact

reduced, thus lowering the further congestion of the system" (16:106). Thus, the utilization

was much lower than expected.

The service times are independent of the number circulating within the network;

thus, the values for these statistics are accurate to within 10%.

In addition, the entry trace demonstrated that tlhe addition of the Host to t he )ii-

ing Philosophers Problem does, in fact, prevent deadlock. Thus, it was showni that the

DARTS design is effective in preventing deadlock without requiring that the actual code

be implemented.

This chapter has shown how to apply the Ada Tasking Model. As already men-

tioned, the simulated results are often less than the theoretical results because the theory

is based upon an infinite population. It is not possible to exactly model an Ada program

in SLAM II; however, the results from the simulation may be used to build confidence in

the theoretical values derived for the queueing network.
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Although this validation does not formally prove that the Ada Tasking Model is

correct, it does demonstrate that formally modeling Ada tasking.is feasible. In order for

this model to be useful, it must be automated. The automation will make the application

of the model much easier and allow changes to be made without causing the entire process

to be repeated. A discussion on improving the Ada Tasking Model is presented in the next

chapter.
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VI. Conclusions and Recommendations

6.1 Motivation for Research

As software system requirements become more complex, software engineers must

carefully design their systems to ensure that the systems adequately meet all the re-

quirements, both functional and non-functional. Because real-time systems have timing

constraints, in addition to the more traditional behavioral constraints, a comprehensive

software design analysis model is required which incorporates performance, timing, and

behavioral constraints. Although the Ada language tasking constructs are compiler inde-

pendent, Ada tasking is dependent on its runtime environment; therefore, a formal model

of Ada tasking is important in order for system designers to make realistic decisions when

modeling Mission Critical Computer Resources (MCCR) systems.

6.2 Conclusions

* Feasibility.

The main focus of this research effort was to determine the feasibility of developing

a parameterized, formal model of Ada tasking. This research showed that such a

parameterized model could be developed by creating a mathematical model which

incorporated real-time scheduling and queueing theory.

e Exponential Distribu.ion Assumption.

The model is based upon the assumption that arrival and service times are expo-

nential for entry queues. This assumption allowed Ada entry points to be modeled

as M/M/1 queues. The model needs to be broadened to include general arrival and

service distributions.

* Modularity.

The model was built modularly so that changes, such as to the distributions, could

be easily incorporated. Another purpose behind the modularity was to allow the

model to be parameterized so that the model could be tailored for specific sofwtware

applications and runtime environments.
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9 Usability.

The Ada Tasking Model needs to be automated in order to be usable. The automa-

tion would also allow changes to be made easily.

* Design Analysis Environment.

The model can be used in the future to develop a design analysis environment for

real-time software systems that require Ada as the target language. Thus, given

a specification for such a system, the design analysis environment can be used to

obtain the information needed to support Ada software design decisions.

6.3 Recommendations

* General Distributions.

The Ada Tasking Model assumes that arrival and service times are exponential for

entry queues; thus, allowing each Ada entry point to be modeled as an M/M/1

queue. If the Ada tasking facility were modified so that it included timing guarantees,

then the model would need to consider general arrival and service distributions.

The queues would be modeled as G/M/1 for general arrival distributions, NI/G/1

for general service distributions, and G/G/1 for both general arrival and service

distributions. Function A234, Model Arrival Patterns, will need to be redesigned in

tl-! event that arrival distributions can be other than exponential.

* Automation.

Additionally, the model should ultimately be automated to facilitate its application.

The software engineer should only need to input the task information to the Ada

Tasking Model which would then manipulate the information and produce the entry

trace and performance statistics.

* SADT.

This research used SADT to model the Ada tasking model. The SUN work stations at

AFIT contain a CASE tool called SAtool which automate the application of SADT.
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This tool should be used in the future because of its automated data dictionary and

consistency checking.

* Further Research.

Model Design Performance is divided into two functions: Define Task Performance

Requirements (Function Al); and Ada Tasking Model (Function A2). (See Fig-

ure 3.2.) This research effort concentrated on developing the Ada Tasking Model.

Future research should develop Define Task Performance Requirements and its input

control non-functional requirements.
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Appendix A. Glossary of Acronyms

AFIT Air Force Institute of Technology

ATM Ada Tasking Model

CPU Central Processor Unit

CSP Communicating Sequential Processes

DARTS Design Approach for Real-Time Systems

DoD Department of Defense

ECS Embedded Computer System

FCFS First-Come-First-Serve

IOP Input/Output Processor

LRM Language Reference Manual

MCCR Mission Critical Computer Resources

pdf Probability Density Function

PDF Probability Distribution Function

RTE Runtime Environment

RR Round Robin

RSTA Real-Time Structured Analysis

SADT Structured Analysis and Design Technique

SJF Shortest-Job-First

UNITY Unbounded Nondeterministic Iterative Transformations
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Appendix B. Detailed Design

B.1 Environment Model

Figure B.A represents the environmental model.

Software

Design

Model

Non-Functional Design Performance

Requirements Performance Data

A-0

RTE

Figure B.1. Environment Model

B.2 Model Design Performance

Figure B.2 represents the AO level of the model. This level is decomposed further to

levels Al, Define Task Performance Requirements, and A2, Ada Tasking AIodel.

B.3 Define Task Performance Requirements

Level Al, labeled Define Task Performance Requirements, will be designed in a later

research effort.
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software

design

Define

non-functional Task
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Requirements

Al

schedulable

Model

Ada task schedule

entry trace
Tasking

Iperformance
A2 statistics

RTE

Figure B.2. Level AD
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B.4 Ada Tasking Model

Level A2, labeled Ada Tasking Model, models the performance of a given Ada design.

Function A2 (shown in Figure B.3) returns a Boolean flag, labeled schedulable; a task

schedule; an entry trace; and performance statistics, based upon the information included

in task info and RTE.

Seek Info

Deter ine boundsnl m T.Tnscheduls-

LevelA2 isfurte d~e c scopd to three funtins:leedl Ab, etemn nsle

L O U bility

(l2ceselra leele2 M td hedulLsn

condition)

decie dti ntek floing sections.

A21

ch e duetsrshdl

ta info cniin

lr~ilty;leelA22 Ceae Sheule ad eve A3,Model entry tal. hs fnton r
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B.5 Determine Unschedulability

The steps to determine unschedulability axe: Determine Pairwise Task Compatibility;

Find Maximal Compatible Sets of Tasks; and Determine Lower Bound on Number of

Processors. (See Figure B.4.)

tSk info

Determine

Pairwie

Task

Compatibility incompatibility
matrix

A21 1

Find

tak info Ma Detxima i

Compstible
SetsMaximal

two2 t icompatibleAL1 list

Determine

1' Bound on bounds-:

processors

Number of

tsl no Processors , schedula 14e

A Z13

Figure B.4. Determine Unschedulability

B.5.1 Determine Pairwise Task Compatibility. Create an NxN incompati-

bility matrix where N is the number of tasks to be scheduled. As previously mentioned,

two tasks are incompatible if they cannot be scheduled together on a single processor. The

incompatibility occurs if the sum of their load factors is greater than 1 or if the sum of their
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execution times is larger than the greatest common divisor of their periods (21:55). The

following pseudocode describes the algorithm to create the incompatibility matrix (21:70).

procedure CreateIncompatibility.Matrix is
i,j a indices of loop counters
N a number of tasks
T a array (1..N) of task periods
E a array (I..N) of task execution times
M a array (1..N, i..N) of Boolean

-- M is the incompatibility matrix
-- True means incompatible
-- False means not incompatible, i.e. compatible

gcd is a separate function which returns the greatest common
divisor of two integers

begin procedure
for i in 1..N loop

for j in 1..N loop
if inj then

M(ii) - False -- every task is compatible
-- with itself

else
if Ei + Ej <= gcd (Ti, Tj) then

-- task i k j are compatible
M(ij) - False

else
-- task i & j are incompatible
H(i,j) a True

end if
end if

end loop
end loop

end procedure

B.5.2 Find Maximal Compatible Sets of Tasks. The functions, Zeroj, Zerol,

list, push, and pop, used within the algorithm, are defined first before describing the

algorithm itself. The call Zeroj (j, M) takes the matrix M and zeros out all the entries in

the jth column and the jth row (21:77). The call Zerol 0, M) takes the matrix MN and

zeros all the rows that have I's in the jth column and then zeros out the entries in the jth

row and column (21:77). Function list(j) returns the list of tasks represented by a 1 in row
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j. The other functions, push and pop, refer to stack operations. Pushing an item places

it on the top of the stack and popping removes an item from the top of the stack. The

algorithm has three stacks: job stack, job complement stack, and array stack.

The following algorithm uses the incompatibility matrix created in the previous step

to produce a list of maximal compatible sets which are sets of tasks which do not exclude

each other from being scheduled on the same processor. Seward's Algorithm 2.1 (21:81-82)

was found to be too general; the problems with this algorithm are:

1. It assumes that the tree will always have a left and right leaf. This is not true because

most of the left branches branch out further, leaving only a right leaf. The algorithm

always tries to get the maximal compatible list from the left leaf even when it does

not exist.

2. Sometimes a right branch branches down another level, but the algorithl ,vror

considers this possibility. When this occurs, it is necessary to pop all extra array alld

job list from their stacks in order to back up to the next node in the tree.

The modified algorithm is shown below.

Step 1. Find the maximum number of ones in any column.
This task will become the root of the tree.

decision: if none of the columns contain any
l's, then move on to Step 3, skipping Step 2.

Step 2. push job (column number) onto job stack

push list (j) onto job complement stack

push Zeroj (J, M) onto array stack

set incompatibility array R = Zeroj (j, M)

Goto Step 4.

Step 3. R now has only zeroes.

handle the left leaf

B-6



(the tree will only have left leaves on
the first time through the algorithm and if a
right branch branches down a whole level.)

-- got maximal compatible (MC) list and store it

backup to node and go down right side
-- pop job stack twice
-- push job complement list onto job stack

handle the right leaf
-- get maximal compatible (MC) list and store it

backup 2 nodes
-- pop job stack twice

if the right branch was down a whole
level (having two leaves) then have
to pop an extra job list and array

from the stacks)
-- pop job stack

-- pop array stack

prepare to go down right branch
-- pop job conplement stack
-- push job complement onto job stack
-- pop array stack twice

if back at the root then stop.
else R a Zerol (last array popped)

Step 4. (An extension of step 1.)

Find the maximum number of ones in any column.

decision: if there are zeros in the matrix
and this is not the first time through (depth
first search) then the tree is branching into
an extra level.

goto Step 2.
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B.5.3 Determine Bound on Number of Processors. An estimate of the

lower bound can be found by summing the load factors and taking the ceiling of the sum.

In other words, the minimum number of processors is equal to

N,R(B.1)
i-I

This lower bound offers the least number of processors that is possible. An approach which

consistently produces a more realistic lower bound Is described below.

Determining the minimal number of processors is part of the Set Covering Problem

(21:207). Finding the minimal covering, however, is not enough because each of the job
sets rhust be load consistent if they are to be scheduled on a single processor. A load

consistent set is a set of tasks whose load factors sum is less than unity. Therefore, the

minimal covering only gives a lower bound for the minimum number of processors required.

Because a valid schedule must have load consistent sets, every minimal covering must

be found and every irredundant cover that is not minimal must also be found (21:211-212).

Seward defines an irredundant covering as a covering in which the removal of one of the

maximal compatible (MC) sets causes the set to no longer be a cover (21:211-212).

The following is an algorithm for finding the lower bound of processors required.

Step 1: create a cover table where the rows represent the
MC lists and the columns represent the jobs.

Place a I in the table to represent that a job is
present in the MC list.

Step 2: if a column contains a single 1, then the corresponding
MC list is an essential MC because the job is only
contained in that MC list. This MC must be contained
in all the solutions.

Remove the MC from the cover table and all the jobs
which are contained in the MC list.

Step 3: Check the table for equivalent rows and remove them.

Step 4: Repeat Steps 2 & 3 until no more essential MC lists
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axe found.

Stop 5: Find the list of maximal compatible sets for the
jobs which are not contained in the essential MC lists.

Step 6: Append the essential MCs to the new NC lists. The
number of lists gives the lower bound on the required
number of processors.

B.6 Create Schedule

Function A22, Create Schedule, creates a schedule of the tasks based upon the task

scheduler for the RTE. This model does not worry about finding the optimum schedule

because this is often an NP-complete problem (21). For example, the seemingly simple case

of finding the optimum solution for a system with a nonpreemptive scheduling algorithm,

independent tasks, and unequal execution times is an NP-complete problem (21:12).

B. 7 Model Entry Calls

Figure B.5 depicts level A23 of the model design. This level has six functions: Get

Entry Precedence Requirements; Create Entry Trace; Create Network of Entry Queue.,:

Model Arrival Patterns; Solve Network Equations; and Gather Performance Slati.sIic.s.

The following sections describe each of these functions.

B.7.1 Get Entry Precedence Requirements. The precedence information is

received from the designer who inputs the task information. This information is transferred

to an NxN matrix, where N is the number of entry points. The matrix contains Boolean

values with dependencies denoted by TRUE. The column depends upon the row. If entry j

depends upon entry i, then M(ij) = TRUE; M(i,i) = FALSE because a task cannot depend

upon itself.

The following pseudocode describes the algorithm to create the precedence matrix.

The function is-precedence(i,j) checks the task information to see whether or not tho entry

j depends upon the entry i.
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Figure B.5. Model Entry Calls - Level A23
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procedure Create.Precedence.Matrix is
i,j = indices of loop counters
N - number of entry points
T = array (i..N) of entry precedence constraints
M - array (1..N, I..N) of Boolean

-- M is the precedence matrix
-- True means precedence constraint, i.e., dependent
-- False means no constraint, i.e., independent

is.precedence(j,i) is a separate function which returns TRUE
if j is constrained by i.

begin procedure
for i in 1..N loop

for j in i..N loop
if i=j then

M(i,i) a False -- an entry does not depend
-- upon itself

else
if is.precedence(T(j), T(i)) then

-- task j depends upon i
M(i,j) - True

else
-- task i & j are independent
M(ij) • False

end if
end if

end loop
end loop

end procedure

B. 7.2 Create Entry Trace. The entry trace will be created using a CSP-like

language. The entry points are modeled as members of the alphabet. Hoare suggests that

CSP can be represented by a LISP program (13:47). The validation model in this thesis

incorporates the entry calls into an Adz. program.

The entry points are modeled as members of an alphabet. Each task, or possibly

subsystem, can have its own alphabet. If two tasks run concurrently and if an event is in

b oth of the alphabets, then the event must occur simultaneously. If the event is in only

olie of the alphabets, then it may occur independently (13:68-69). The same interaction

is true for "N" concurrent tasks.
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CSP ignores timing details, but, if the entry trace is automated, then the addition

of a time stamp can easily be added. These times will be useful for giving general timing

relationships between different entry calls.

B.7.3 Create Network of Entry Queues. The queues represent the entry

points, i.e., the accept statements. The arrival rate is determined by the calling task(s)

and the queues will be represented by M/M/1 queues. The interconnections between the

entry queues are determined by the precedence matrix developed in Section B.7.1.

This segment of the model may b ascribed by manually drawing the queueing

network if the number of queues is small. Otherwise, an NxN probability matrix is created,

where the indices of the matrix represent entry queues. This matrix is similar to the

precedence matrix described above except that the entries are values between 0 F I

which denote the probability of leaving queue i (represented by row i) and ejr'.ering q. -

j (represented by column j).

This matrix is referred to as the matrix of transition probabilities (P) for discrete

systems and as the matrix of transition rates (Q) for continuous systems (17:53). This

model will use the Q matrix because it assumes exponential distributions which imply

that the system is continous.

B.7.4 Model Arrival Patterns. The arrival distributions for the model de-

veloped in this thesis are assumed to be Poisson; therefore, the interarrival process is

exponential. (The notation used in this section is consistent with that used by Kleinrock

(16)).

The Poisson distribution is shown in the following equation.

Pk(t) = te- At for k > O, t > 0 (B.2%

A is the average rate at which customers arrive at the quete. The average time

between arrivals is 1/A. Pk(t) is the probability of k ar ',als during the time interval (0,t).
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The time between arrivals is exponentially distributed; therefore, the interarrival times are

exponential.

The exponential Probability Distribution Function (PDF) (16:65) for arrivals is de.

noted as:

A(t)= 1-e - At fort> 0 (B.3)

And the exponential Probability Density Function (pdf) (16:65) is:

a(t) - d A(t. ) = AeAt for t > 0 (B.A)dt

The arrival rate (A) for each of the queues is placed in a row vector, where the index

refers to the queue number from Section B.7.1.

B.7.5 Solve Network Equations. Because the queues are assumed to be

M/M/1, the network can be modeled using the Jackson network equation below (16: 9-

150),
N

Ai = 7Yi +" L \jrji for i = 1, 2,..., N (B.5)

j=1

where the ri's are the rates described in the Q matrix in Section B.7.3 and the A's are the

arri- rates described in Section B.7.4.

There is an equation for each queue. The set of equations may be solved by hand or

simultan,,usly by placing them in a matrix and using a mathematical software program.

Figure B.6 shows one queue out of the system of queues.

External arrivals (-Ii) are arrivals from outside the network which have the Poisson

distribution. Internal arrivals Akrki arrive from other queues within the network. Feedback

is represented by Airii. External departures leave the system entirely and are represented

as Ai(1 - Fj rij). Internal departures leave Queue i as Airij and are internal arrivals at

Queue j.
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B.7.6 Gather Performance Statistics. The entry trace generates a sequence of

the entry calls. The remainder of the information gained from the entry trace depends upon

the implementation of the trace. This model assumes that the trace will be implemented

as output statements within the program and that the events will be time stamped. Thus,

information gathered from the entry trace, in addition to the list of events, is the number

of times each entry was called, when the calls were made, and general information for the

interarrival and service distributions.

The statistics gathered from the queueing network are averages. The information

may include:

9 arrival rate (A)

* servici rate (As)

* utilization of queues (p)

e time in queue (T)

• number in queue (1?q)

* service time (S(y))
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* wait time (W(y))

The values of A and u are calculated in the function Solve Network Equations. The

equations for the remaining variables are shown below:

p =A (B.6)

T= 1 (B.7)i-p

AT = p (B.8)
1-p

S(y) = 1 - e- (1 - P)y for y 0 (3.9)

W(y) = 1 - pe - 1'4(1- P) for y > 0 (B.10)
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B.8 Data Dictionary

B.8.1 List of Activities

A-O MODEL DESIGN PERFORMANCE
Al DEFINE TASK PERFORMANCE REQUIREMENTS
A2 Ada TASKING MODEL
A21 DETERMINE PAIRWISE TASK COMPATIBILITY
A22 CREATE SCHEDULE
A23 MODEL ENTRY CALLS
A231 GET ENTRY PRECEDENCE REQUIREMENTS
A232 CREATE ENTRY TRACE
A233 CREATE NETWORK OF ENTRY QUEUES
A234 MODEL ARRIVAL PATTERNS
A235 SOLVE NETWORK EQUATIONS
A236 GATHER PERFORMANCE STATISTICS

I
NAME: Ada TASKING MODEL
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A2
DESCRIPTION:

The Ada tasking model models the performance of the Ada
design which was developed by a method such as DARTS.
The model returns a task schedule, and event trace, and
performance statistics.

INPUTS: n one
OUTPUTS: SCHEDULABLE

TASK SCHEDULE
ENTRY TRACE
PERFORMANCE STATISTICS

CONTROLS: TASK INFO
MECHANISMS: RTE
PARENT ACTIVITY: MODEL DESIGN PERFORMANCE
REFERENCE: Appendix B
I

NAME: CREATE ENTRY TRACE
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A232
DESCRIPTION:

This function creates an event trace which is a linear
list of the entry calls.

INPUTS: none
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OUTPUTS: ENTRY TRACE
CONTROLS: PRECEDENCES
MECHANISMS: none
PARENT ACTIVITY: MODEL ENTRY CALLS
REFERENCE: Appendix B
I

NAME: CREATE NETWORK OF ENTRY QUEUES
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A233
DESCRIPTION:

The network of entry queues is developed from the entries
which are input from the software design.

INPUTS: TASK INFO
OUTPUTS: NETWORK
CONTROLS: PRECEDENCES
MECHANISMS: none
PARENT ACTIVITY: MODEL ENTRY CALLS
REFERENCE: Appendix B
I
NAME: CREATE SCHEDULE
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A22
DESCRIPTION:

Create schedule creates a schedule based upon the task
information, task scheduler, and number of processors
available.

INPUTS:
NUM PROCESSORS
TASK INFO
OUTPUTS: TASK SCHEDULE
CONTROLS: SCHEDULABLE
MECHANISMS: SCHEDULER INFO
PARENT ACTIVITY: Ada TASKING MODEL
REFERENCE: Appendix B
I
NAME: DEFINE TASK PERFORMANCE REQUIREMENTS
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: Al
DESCRIPTION:

Defining the task performance requirements will be
designed in a follow-on thesis.

INPUTS: NON-FUNCTIONAL REQUIREMENTS
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OUTPUTS: TASK INFO
CONTROLS: SOFTWARE DESIGN
MECHANISMS: none
PARENT ACTIVITY: MODEL DESIGN PERFORMANCE
REFERENCE: Appendix BI
NAME: DETERMINE BOUND ON NUMBER OF PROCESSORS
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A213
DESCRIPTION:

This function estimates the upper and lower bounds of the
required number of processors for the given set of tasks.

INPUTS:
TASK INFO
NUM PROCESSORS
OUTPUTS:
BOUNDS
SCHEDULABLE
CONTROLS: MAXIMAL COMPATIBLE LIST
MECHANISMS: none
PARENT ACTIVITY: DETERMINE UNSCHEDULABILITY
REFERENCE: Appendix B
I
NAME: DETERMINE PAIRWISE TASK COMPATIBILITY
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A211
DESCRIPTION:

This function compares every pair of tasks to see if they
can co-exist on the same processor. An incompatibility
occurs if the sum of their load factors is greater than
unity or if the sum of their execution times is larger
than the greatest common divisor of their periods.

INPUTS: none
OUTPUTS: INCOMPATIBILITY MATRIX
CONTROLS: TASK INFO
MECHANISMS: none
PARENT ACTIVITY: DETERMINE UNSCHEDULABILITY
REFERENCE: Appendix BI
NAME: DETERMINE UNSCHEDULABILITY
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A21
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DESCRIPTION:
Determine unschedulability is a necessary condition for
determining if a set of tasks can be scheduled.

INPUTS: NUN PROCESSORS
OUTPUTS:
BOUNDS
SCHEDULABLE
CONTROLS: TASK INFO
MECHANISMS: none
PARENT ACTIVITY: Ada TASKING MODEL
REFERENCE: Appendix B
I
NAME: FIND MAXIMAL COMPATIBLE SETS
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A212
DESCRIPTION:

This function uses the incompatibility matrix to produce
a list of maximal compatible sets which are sets of tasks
which do not exclude each other from being scheduled on
the same processor.

INPUTS: TASK INFO
OUTPUTS: MAXIMAL COMPATIBLE LIST
CONTROLS: INCOMPATIBILITY MATRIX
MECHANISMS: none
PARENT ACTIVITY: DETERMINE UNSCHEDULABILITY
REFERENCE: Appendix B
I
NAME: GATHER PERFORMANCE STATISTICS
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A236
DESCRIPTION:

This function generates statistics based upon the entry
trace and the queueing network of entries.

INPUTS: none

OUTPUTS: PERFORMANCE STATISTICS
CONTROLS:

SOLUTION
ENTRY TRACE

MECHANISMS: none
PARENT ACTIVITY: MODEL ENTRY CALLS
REFERENCE: Appendix B
I
NAME: GET ENTRY PRECEDENCE REQUIREMENTS
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TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A231
DESCRIPTION:

The precedence requirements are input by the designer and
this function converts them into a format acceptable for
the Ada Tasking Model.

INPUTS: TASK INFO
OUTPUTS: PRECEDENCES
CONTROLS: SCHEDULABLE
MECHANISMS: none
PARENT ACTIVITY: MODEL ENTRY CALLS (A23)
REFERENCE: Appendix B
I

NAME: MODEL ARRIVAL PATTERNS
TYPE: ACTIVITY
PROJECT: ATM
NUMBER; A234
DESCRIPTION:

This function describes the arrival distributions for
each of the entry queues in the network developed in
A233.

INPUTS:
TASK INFO
TASK SCHEDULE
OUTPUTS: ARRIVALS
CONTROLS: NETWORK
MECHANISMS: none
PARENT ACTIVITY: MODEL ENTRY CALLS (A23)
REFERENCE: Appendix B

NAME: MODEL DESIGN PERFORMANCE
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A-O
DESCRIPTION:

Modeling design performance is accomplished after the
initial design has been accomplished by a method such as
DARTS.

INPUTS: NON-FUNCTIONAL REQUIREMENTS
OUTPUTS: PERFORMANCE STATISTICS
CONTROLS: SOFTWARE DESIGN
MECHANISMS: RTE
PARENT ACTIVITY: none
REFERENCE: Appendix B
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NAME: MODEL ENTRY CALLS
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A23
DESCRIPTION:

Model entry calls models the entries in the Ada design
and returns an entry trace and performance statistics.

INPUTS: TASK INFO
OUTPUTS:
ENTRY TRACE
PERFORMANCE STATISTICS
CONTROLS: TASK SCHEDULE
MECHANISMS: none
PARENT ACTIVITY: Ada TASKING MODEL
REFERENCE: Appendix BI
NAME: SOLVE NETWORK EQUATIONS
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A235
DESCRIPTION:

This function solves the network of equations based upon
the arrival distributions.

INPUTS: NETWORK
OUTPUTS: SOLUTION
CONTROLS: ARRIVALS
MECHANISMS: none
PARENT ACTIVITY: MODEL ENTRY CALLS
REFERENCE: Appendix B

B.8.2 List of Data Elemen~ts

ARRIVALS
BOUNDS
ENTRY TRACE
INCOMPATIBILITY MATRIX
MAXIMAL COMPATIBLE LIST
NETWORK
NON-FUNCTIONAL REQUIREMENTS
NUM PROCESSORS
PERFORMANCE DATA
PERFORMANCE STATISTICS
PRECEDENCES
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RTE
SCHEDULABLE

SCHEDULER INFO

SOFTWARE DESIGN
SOLUTION

TASK INFO

TASK SCHEDULE

NAME: ARRIVALS
TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:

ARRIVALS describes the interarrival distributions for
each of the entry queues in the network developed in
A233. The interarrivals are assumed to follow the
exponential distribution.

DATA TYPE: exponential distribution
SOURCES: A234

DESTINATIONS
INPUT: none
CONTROL: A235
REFERENCE: Appendix B
I
NAME: BOUNDS
TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:

Bounds is an integer range which represents the upper and
lower bounds for the number of processors.

DATA TYPE: INTEGER
MIN VALUE: I
SOURCES: A21, A213
DESTINATIONS:
INPUT: none
CONTROL: none

REFERENCE: Appendix B
I
NAME: ENTRY TRACE

TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:

The entry trace is a linear list of the entry calls.
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DATA TYPE: list
PART OF: PERFORMANCE DATA
SOURCES: A2, A23, A232
DESTINATIONS:
INPUT: none
CONTROL: A236
REFERENCE: Appendix B
I
NAME: INCOMPATIBILITY MATRIX
TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:

The incompatibility matrix is an NxN matrix representing
which tasks cannot be scheduled on the same processor.

DATA TYPE: NxN matrix of Boolean
SOURCES: A211
DESTINATIONS:
INPUT: none
CONTROL: A212
REFERENCE: Appendix B
I
NAME: MAXIMAL COMPATIBLE LIST
TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:

A maximal compatible met is a set of tasks which do not
exclude each other from being scheduled on the same
processor. This element is a list of all such sets.

DATA TYPE: list
SOURCES: A212
DESTINATIONS:
INPUT: none
CONTROL: A213
REFER NCE: Appendix B

NAME: NETWORK
TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:

Network describes the queueing network developed to
represent each of the entries.

DATA TYPE: NxN matrix
MIN VALUE: 0
MAX VALUE: I
SOURCES: A233
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DESTINATIONS:

INPUT: A235
CONTROL: A234

REFERENCE: Appendix B

NAME: NON-FUNCTIONAL REQUIREMENTS
TYPE: DATA ELEMENT

PROJECT: ATM
DESCRIPTION:

System constraints expressed in natural language.

DATA TYPE: Natural language

SOURCES: environment
DESTINATIONS:
INPUT: A-O, Al

CONTROL: none
REFERENCE: Appendix B
I
NAME: NUM PROCESSORS

TYPE: DATA ELEMENT
PROJECT: ATM

DESCRIPTION:
The number of processors that are available in the system
which is being modeled.

DATA TYPE: INTEGER
MIN VALUE: I
PART OF: RTE
SOURCES: environment
DESTINATIONS:
INPUT: A21, A22, A213
CONTROL: none
REFERENCE: Appendix B
I
NAME: PERFORMANCE DATA
TYPE: DATA ELEMENT

PROJECT: ATM
DESCRIPTION:

Performance criteria is the output of the model and
consists of a task schedule, event trace, and performance
statistics.

COMPOSITION:

SCHEDULABLE

TASK SCHEDULE
ENTRY TRACE
PERFORMANCE STATISTICS

SOURCES: A-O
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DESTINATIONS:
INPUT: none
CONTROL: none
REFERENCE: Appendix BI
NAME: PERFORMANCE STATISTICS
TYPE: DATA ELEMENT
PROJECT: ATM

DESCRIPTION:
The performance statistics are generated from the event
trace and the queueing network. The statistics include
wait time, service time, queue size, queue utilization,
and arrival time.

DATA TYPE: positive, real numbers
PART OF: PERFORMANCE DATA
SOURCES: A2, A23, A236
DESTINATIONS:
INPUT: none
CONTROL: none
REFERENCE: Appendix BI
NAME: PRECEDENCES
TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:

Precedences is an NxN matrix which describes if one task
is dependent upon another task in order to execute.

DATA TYPE: NxN matrix of Boolean
SOURCES: A231
DESTINATIONS:
INPUT: none
CONTROL: A233, A232
REFERENCE: Appendix B
I
NAME: RTE
TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:

The RTE (runtime environment) consists of the computer
hardware and the ovarating system. The data element
contains the number of available processors and the
scheduling information.

COMPOSITION:
NUM PROCESSORS
SCHEDULER INFO
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SOURCES: environment
DESTINATIONS:
INPUT: none
CONTROL: none
MECHANISM: A-O, A2
REFERENCE: Appendix BI
NAME: SCHEDULABLE
TYPE: DATA ELEMENT
PROJECT: ATM

DESCRIPTION:
A Boolean flag designating whether the given tasks can

be scheduled within the constraints of the task

informatioa and RTE.
DATA TYPE: BOOLEAN
VALUES:
FALSE * tasks cannot be scheduled
TRUE = tasks may or may not be schedulable, move

onto the next step
PART OF: PERFORMANCE DATA
SOURCES: A2, A21, A213
DESTINATIONS:
INPUT: none
CONTROL: A213
REFERENCE: Appendix B
I

NAME: SCHEDULER INFO

TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:

The scheduler information describes the type of task
scheduler and entry scheduler. The entry scheduler is
assumed to be a nonpreemptive FCFS scheduler.

PART OF: RTE

SOURCES: none

DESTINATIONS:
INPUT: none
CONTROL: none

MECHANISM: A22
REFERENCE: Appendix B
I
NAME: SOFTWARE DESIGN
TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:
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The software design is developed prior to invoking the
performance model, possibly using a method such as DARTS.

DATA TYPE: Natural language
SOURCES: environment
DESTINATIONS:
INPUT: none
CONTROL: A-O, At
REFERENCE: Appendix B
I
NAME: SOLUTION
TYPE: DATA ELEMENT
PROJECT: kTM
DESCRIPTION:

Solution represents the solution to the set of
simultaneous equations from the queueing network.

DATA TYPE: matrix of equations
SOURCES: A235
DESTIIATIONS:
INPUT: none
CONTROL: A236
REFERENCE: Appendix B
I
NAME: TASK INFO
TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:

The task information is input by the designer and
includes the task name or id, period or frequency,
execution time, precedence requirements, and entry
points.

DATA TYPE: record
COMPOSITION:
TASK.ID
FREQUENCY
EXECUTION.TIME
PRECEDENCES
ENTRY-INFO
SOURCES: Al
DESTINATIONS:
NPUT: A212, A213, A22, A23, A231, A233, A234
CONTROL: A2, A21, A211
REFERENCE: Appendix B
I
NAME: TASK SCHEDULE
TYPE: DATA ELEMENT

B-27



PROJECT: ATM
DESCRIPTION:

The task schedule is a schedule based upon the given task

information and RTE. The schedule may or may not be
optimal.

PART OF: PERFORMANCE DATA
SOURCES: A2
DESTINATIONS:
INPUT: A234
CONTROL: A23
REFERENCE: Appendix B
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Appendix C. Validation Programs

C.1 Dining Philosophers Solution

C.1.1 MACSYMA Batch File. The r3, probabilities and As were calculated in MAC-

SYMA. The augmented coefficient A matrix derived in MACSYMA is shown below.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.6 3
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.63
£0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0.3)

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.5]
0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0.7)
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.9)
0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0.6)
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.3)
0 0 0 0 0 0 0 0 1 00 0 00 0 0 0.5]
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.7)
(0 0 0 0 0 0 0 0 0 0 1 0 00 0 0.9 1
£0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.1)
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.2)

£0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.3)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.4)
£0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.5)

The MACSYMA batch file is shown below.

x:matrix( [1), [23. [33,143, £53);
f0: 1/10;
fl: x23 * 10;
f2: x[33 * 10;
3: x[43 * 1O;
4: [6 * 10;

11: fO + f + f2 + f3 + 4;
x-sum: x[13 + x£2J + x[33 + x£4J + x[3;
r121: 1;
r131: 1;
r141: 1;
r151: 1;
r161: 1;
r12: x[1/z.sum;
r13: x[2J/x-sum;
r14: x [3/x-sum;
r15: x[43/x-sum;
ri6: x[5]/xsu;
r23: x£IJ/(x1) + x163);
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r27: x(5J/(x[1J + zE63);
r34: x[2J/(x[1J + x[23);
r38: r1J/(x[13 + x123);
r45: x[3J/(x[2J + x[33fl:
r49: x[23/ (x [23 + xC33);
r5s: x [43/ (z[33 + x(4J );
rSiO: x[3J/(x(3J + z[43);
r62: x[51/(x[4J + x [63) s
r611: xt4J/(x(4J + x[63J);
zr7l1: x(5J/(x[iJ + x153);
r712: x[1J/(x[lJ + x163);
r87:- xtiJ/(x[iJ + 3t[23);
r813: zE23/(xtlJ + x(23);
r98: x12J/(x[2J + xE3J);
r914: x[33/(xt23 + x[33);
rnOg: x[3J/(x[3J + xC4J);
riOlS: x[43/(X(3] + xE4]);
rillo: xE43/(x[4) + z153);
r1116: x(5J/(xE4J + x163);
Rt:matrix(
EO,O,O,O,O,O,O,O,O,O,O,rl21,rl31,1±41,rl~l,rl81,11),
£r12,-1,O,ObO, r62,0,0,0,0,0O,0,~,,1,
Enl3,r23,-1,O,O,O,0,0,0,0,0,0,0,0,0,0,0).
[r14,O,r34,-1b,,,,,,,O,0,0,0,0,0J,

En16,O,O,O,r56,-i,0,0,O,O,O,0,0,0,0,0,0),
[O,r27,O,O,O,O,-I,r87,0~,,,,,,,0,3
EO,O.r38,O,O,O,O,-1,r98,O,O,O,O,O,O,0,03,
EO,O,O,r49,O.O.O,O,-1,r109.,,,,,,3
EO,O,O,O,r51O,O,O,,-1,rlllO,O,0,O,0,0,03.
EQ 0,0 ,0 ,0 ,r811,z7ll,O,O ,O-1,0,O .0,0,0,03OJ
E00,0O,O000,r712,0,,o.-1,,,,,J.
[0,0,0,0,0,0,0,rS13,0,0,0,0,-1,0,0,0,03,
[0 ,0 .0 .0 0.0 ,0 ,,r9l4, 0 ,0,0 ,-1,0 ,O,0J,
EO,O.O.O.O.0,0,0,O0,O,,,,,-i,0,0J,
EO,O,O,0,O,O,Q,0,0,O,rn16,0,O,0*0,-i,0J);
mwecholou(R);
m:subut(mL16J*4/5+mE15J ,m[iS).m);
m: subst(-mE18) *61592/26975+mE14J ,m[14J,m);
m:subst(mtlOJ*8014/675+m[13) ,mu13J ,m);
m:subut(m[163*491/2355+m(12 ,mE12J ,m);
m:subst(mE16J*9/5+m[11 ,m[11J ,u);
m:aubst(m(15J*77177/20780+mE14J ,mE14J,m);
m: subat(-m[lGJ *42751/2160.mE133 ,mt13J ,m);
m:uubst(-m(15J*14/471+m[12J ,ns12J .m);
m:subst(mt15J*7/4+mE1OJ ,mE10J ,m);
m:,subst(m [14) *785/108+m[13J ,m[13J,m);
m:subst(m2143*S/3+mE9J ,mt ,im);
m:subost(,ut13)*6/157+mE12J ,mE12J,m);
m:subst(m(133*3/2+m18J ,mE8).m);
m:subst(mtl2*6+aE7),mE7J ,nO;
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m:subst(a1t)*9/4+ :J 3,m1G3 ,m);
-:subst(-a[l]*28/27+[m53 ,,a( ,-);
m:s'bst(-.El03*15/14+a[43.a4 ],);
m:subst(s[103*7/3+a[5] ,aGS 3a);
a: subst(-u[3 *6/S+x[33 ,a33 .- );
•:subst(a(93*S/2+,,4] .3(],.,);
m: subst(-a[83 *2/6+,,[2] ,"2J a);
a: subst (, 8] *3+a[3- x33 a);
a:subst(,[7] *6/S+-123 .m2] ,a);
m:subst(-"[73*15/8+-[6 ,uS3 ,m);
m: subst(-az[626/3+"1J ni13 ,a);
m: subst (a[2]*15+,[1J ,xE13 ,);
m:subst(0, (03,);
3:l.0*,;

m:subst(1,1.0,a);
m:subst(1.5, [1. 5),n)
m:subst(0.1, [0.1,m);
m:subst(0.2,[0.23,m);
m:subst(0.3 [0.3),.);
m:subst(0.4, 0.43),);
m:subst(O.5, 0.5),m);
m:subst(0.6, [0.6,m);
m:subst(0.7, [0.7,m);
m:subst(0.9, 0.9,m);
quito;

C.1.2 Entry Trace. A complete entry trace for a 3 meal cycle is shown below:

(Philosopher 0 enters dining room -- Philosopher 1 enters dining room -- Philosopher 2
enters dining room - Philosopher 0 picks up fork 0 -.- * Philosopher 3 enters dining room
Philosopher I picks up fork 1 - Philosopher 2 picks up fork 2 -# Philosopher 3 picks up fork 3
--- + Philosopher 3 picks up fork 4 -+ Philosopher 3 puts down fork 4 -- Philosopher 3 puts down
fork 3 - Philosopher 2 picks up fork 3 ---+ Philosopher 3 leaves dining room -- Philosopher
4 enters dining room -*-+ Philosopher 4 picks up fork 4 - Philosopher 2 puts down fork 3 -

Philosopher 2 puts down fork 2 - Philosopher 1 picks up fork 2 -- Philosopher 2 leaves dining
room -- Philosopher 1 puts down fork 2 .- Philosopher 1 puts down fork I - Philosopher 0
picks up fork 1 --. Philosopher 1 leaves dining room - Philosopher 3 enters dining room -
Philosopher 3 picks up fork 3 & Philosopher 0 puts down fork I -* Philosopher 0 puts down fork
0 --. Philosopher 4 picks up fork 0 -+ Philosopher 0 leaves dining room -- Philosopher 2 enters
dining room --- Philosopher 2 picks up fork 2 - Philosopher 4 puts down fork 0 ---+ Philosopher
4 puts down fork 4 -- Philosopher 3 picks up fork 4 -- Philosopher 4 leaves dining room -
Philosopher 3 puts down fork 4 -- + Philosopher 3 puts down fork 3 --- Philosopher 2 picks up
fork 3 -- + Philosopher 3 leaves dining room -- Philosopher 2 puts down fork 3 ---. Philosopher 2
puts down fork 2 -- Philosopher 2 leaves dining room - Philosopher 1 enters dining room
Philosopher 1 picks up fork 1 -- + Philosopher 1 picks up fork 2 - Philosopher 4 enters dining
room -- + Philosopher 4 picks up fork 4 -- # Philosopher 4 picks up fork 0 - Philosopher 3 enters
dining room ---+ Philosopher 3 picks up fork 3 -. Philosopher 1 puts down fork 2 - Philosophe-r
1 puts down fork 1 -+ Philosopher 1 leaves dining room - Philosopher 4 puts down fork 0 -
Philosopher 4 puts down fork 4 ---* Philosopher 3 picks up fork 4 - Philosopher 4 leaves dining
room ---. Philosopher 3 puts down fork 4 -. Philosopher 3 puts down fork 3 - Philosopher
3 leaves dining room - Philosopher 4 enters dining room -- Philosopher 4 picks up fork 4
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Philosopher 4 picks up fork 0 -* Philosopher 0 enters dining room -- Philosopher 2 enters
dining room -b Philosopher 2 picks up fork 2 -- * Philosopher 2 picks up fork 3 - Philosopher
4 puts down fork 0 - Philosopher 0 picks up fork 0 --. Philosopher 4 puts down fork 4 -
Philosopher 0 picks up fork I ---# Philosopher 4 leaves dining room - Philosopher 2 puts down
fork 3 -o Philosopher 2 puts down fork 2 -- # Philosopher 2 leaves dining room -- Philosopher
0 puts down fork 1 ---* Philosopher 0 puts down fork 0 -p Philosooher 0 leaves dining room
Philosopher 1 enters dining room ---- Philosopher I picks up fork 1 -- 1' Philosopher 1 picks up
fork 2 - Philosopher I puts down fork 2 ---+ Philosopher I puts down fork 1 -- , Philosopher
1 leaves dining room - Philosopher 0 enters dining room ---* Philosopher 0 picks up fork 0 -
Philosopher 0 picks up fork I -- Philosopher 0 puts down fork 1 -- Philosopher 0 puts down
fork 0 -- * Philosopher 0 leaves dining room)

C.1.3 SLAM II Code.

GEN,K. EDWARDS,Dining Philosophers,I/i/90,1,,,, ,72;
LIM,17,6,5;
NETWORK;

SLAM II IMPLEMENTATION FOR THE DINING PHILOSOPHERS

ATTRIBUTES:
ATRIB(I) a philosopher's seat number
ATRIB(2) = number of meals eaten
ATRIB(3) a eating service time
ATRIB(4) = thinking service time
ATRIB(S) = time philosopher enters dining room
ATRIB(6) z time philosopher begins thinking

BIRTH OF S PHILOSOPHERS

create 5 entities;

CREATE,O.00001, , 5,1;
ACT/i;
COLCT, ALL, Birth Times;
GOON,I;

; ASSIGN ATTRTBUTES TO ENTITIES

ASSIGN,ATRIB(1)=NNCNT(1)-I,
ATRIB(2)-O,
ATRIB(3)zl.O;

ENTER DINING ROOM

ENTER QUEUE(1);
ACT,EXPOE(O.5);
ASSIGNATRIB(5)=TNOW;
GOON, 1 ;
ACT,,ATRIB(1).EQ.O,UPFO; phil 0 will pick up fork 0
JCT,,ATRIB(I).EQ.I,UPFI; phil I will pick up fork I
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ACT ,ATRIB(1).EQ.2,UPF2; Phil 2 will pick up fork 2
ACT ,ATRIB(i).EQ.3,UPF3; phil 3 till pick up fork 3
ACT, ,ATRII(t).EQ.4,UPF4; phil 4 will pick up fork 4
ACT, ,ATRIB(1).GT.S.OR.ATID(1).LT.O,EUEID; error hanidler

*PICKING UP FORKS

*fork 0

UPFO QUEUE(2);
ACT,DRAID*ATRIB(3);
GOON, 1;
ACT, ,ATRIB(1) .EQ.O,UPFI; phil 0
ACT, ,ATRIB(1).EQ.4,DIFO; phil 4
ACT., TRIB(1) .NE.O.AND.ATRIB(1) .ILI,ERREND;

*fork I

UPF1 QUEUEC3;
ACT,DP.AND*ATRI(3);
GOOI,1;
ACT,,ATRIB(l).EQ.1,UPF2; phil I
ACT,,ATRIB(l).EQ.O,DNFI; phil 0
ACT, ,ATRIB(1) .NE.O.AND.ATRIB(1) .NE.1.ERRtEND;

fork 2

UPF'2 QUEUE(4);
ACT DRAND*ATRIB(3);
GOON, 1;
ACT,,ATRIB(1).EQ.2,UPF3; phil 2
ACT,,ATRIB(t).EQ.1,DNF2; phil 1
ACT, ,ATRIB(1) .NE.1.AND.ATRIB(1) .NE.2,ERRHND;

fork 3

UPF3 QUEUE($);
ACT,DRAND*ATRIB(3);
GOON 1;
ACT,,ATRIB(1).EQ.3,UPF4; phil 3
ACT,,ATIB(l).EQ.2,DNF3; Phil 2
ACT, ,ATRIB(1) .NE.2.AND.ATCIB(l) .UE.3,ERRtNND;

fork 4

UPF4 QUEUE(6);
ICT,DRAND*ATRIB(3);
GOON 1;
ACT,,ATRID(l).EQ.4,UPFO; phil 4
ACT,,ATRIB(1).EQ.3,DIF4; phil 3
ACT, ,ATRIB(1) .IE.3.AID.ATRIB(1) .NE.4,ERRHID;
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PUTTING DOW FORKS

*forkO0

DIFO QUZUEMT;
ACT;

IIN,;
ACT,,ATRIB(1).EQ.4,DNF4; phil 4
ACT, ,ATRIB(1) .NE.O.AND.ATRIB(l) .NE.4,BRRND;
ACT, ,ATRIB(1).EQ.O;
COLCT,INT(5),PhilO gat Time;

* inc meals eaten for phil 0 & assign eating time
ASSIGN,AThIN(2)*ATIBZ(2)+1.

ATRIB(4)*9.O;
ACT, ...TO;

*fork I

DNF1 QUEUE(S);
ACT;
GOON,1;
ACT,,ATRID(l).EQ.O,DNFO; phil 0
ACT, ,ATRIB(1) .NE.O.AND.ATRICi) .16. 1,ERRHND;
ACT, ,ATRIB(1).EQ.1;
COLCT,INT(6),Phill Eat Time;
inc meals eaten for phil 0 & assign eating time
ASSIGN,ATRIB(2)=ATRXB(2).1,

ATRIB(4)=4.O;
ACT .. ,TI;

fork 2

DNF2 QUEUE(9);
ACT;
GOON, 1;
ACT,,ATRIB(1).EQ.1,DNFI; phil I
ACT, ,ATRIB(i').NE.1.AND.ATRIB(1) .NE.2,ERRItED;
ACT,,ATRIB(4 . EQ.2;
COLCT,INT(5),Phil2 Eat Time;
inc meals eaten for phil 0 & assign eating time
ASSIGN,ATRIB(2)zATRIB(2)+1,

ATRIB(4)=7/3;
ACT,, ,T2;

fork 3

DNF3 QUEUE(1O);
ACT;
GOON ,1;

ACT,,ATRIB(i).EQ.2,DNF2; phil 2
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ACT, ,ATRIB(1) .NE.2.AND.ATRII(1) .NE.3,ERRMND;
ACT, ,ATRID(i) .ZQ.3;
COLCT,IIT(5),Phil3 Rat Time;
inc meals eaten for phil 0 & assign eating time
ASSIGNIATIB(2)=ATRID(2)+1,

ATRIB(4)=3/2;
ACT ... M

*fork 4

DNF4 QUEUE(11);
ACT;
0001,1;
ACT,,ATRIB(1).EQ.3,DNF3; phil 3
ACT, ,ATRID(1) .NE.3.AND.ATRIB(1) .NE.4,ERREND;
ACT, ,ATRIB(1) .EQ.4;
COLCT,INT(5),Phil4 Eat Time;

* inc meals eaten for phil 0 &assign eating time
ASSIGI,ATRtIB(2)=ATRIB(2)+1,

ATRIE (4)a1;
ACT .. ,T4;

LEAVE DINING ROOK TO THINK

philosopher 0 thinks

TO ASG,ATRIS (6)=TNOV;
THKO QtJEUE(12);

ACT,EXPON(ATRIB(4));
COLCT,IIT(S),PhilO Think Time;
COLCT,IIT(S),PhilO Cycle Time;
ACT .. ,CYCLE;

philosopher I thinks

Ti ASSIGN ,ATRIB(6)=TNOW;
THKI QUEUE(13);

ACT,EXPON(ATRIB(4));
COLCTINT(S),Phill Think Time;
COLCT,INT(S),Phill Cycle Time;
ACT, ...CYCLE;

*philosopher 2 thinks

T2 ASSIGN ,ATRIB(6)=TNOV;
TEK2 QUEtJE(l4);

ACT,EXPON(ATRIB(4));
COLCT,INT(8),Phil2 Think Time;
COLCT,INTC5),Phil2 Cycle Time;
ACT, ...CYCLE;
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; philosopher 3 th inks

T3 ASsGNATRIB (6) =TNOW;
THK3 QUEUE(iS);

ACT,EXPON(ATRIB(4));
COLCT,IXT(6).Phil3 Think Time;
COLCT,IIT(S),Phil3 Cycle Time;
ACT,,, CYCLE;

* philosopher 4 thinks

T4 ASSIGIATRIB(6)*TNOW;
THK4 QUEE(16);

ACTEXPO(ATRIB(4));
COLCT,INT(6),Phil4 Think Time;
COLCT,INT(S),Phil4 Cycle Time;
ACT,, CYCLE;

collect avg cycle time statistics

CYCLE COLCT,INT(S),Avg Cycle Time;
GOON, 1;
ACT,,ATRIB(2).LT. 1000,ENTER; keep eating
ACT, ,ATRIB(2).GE.1000,DIE; max meals eaten, exit system

; ERROR HANDLER

ERRHND QUEUE(17);
COLCT,ALL,Errors;
ACT,. ,ENTER;

TERMINATE

DIE TERN,5000;
END;

FIN;

C.1.-4 Ada Code. This section contains the following Ada code for the Dinhig Philoso-

phers.

" procedure Dining Philosophers

* package Philosopher Info

* procedure Dining

- task Fork

- task Host
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- task Philosopher

- task Collect Entries

- task Collect Cycle State

C.1.5 procedure Dining Philosophers.

with Philosopher.Into, Dining, TextIO;
use Philosopher.Info, Text.IO;
procedure Dining.Philosophors is

reply : character;
PrintTrace : Boolean := False;

NumMeals,
Maximum.Entries : Integer := 0;

package Int.1O is new TextIO.IntegerI0 (Integer);

begin

TextIO.put.line ("Th* Dining Philosophers . . .);
Text-IO.new-line(2);

-- allows user to input number of meals
Text.IO.put ("Enter number of meals: 1);
IntIO.get (Ium.Meals);
TextIO.new.line;

-- allow user to turn off entry trace output
TextIO.put ("Output the entry trace <y/n>? ');
Text-IO.get (reply);
TextIO. newline;
it reply-'y' then

Print.Trace :s True;
end if;

Maximum-Entries :N lumPhils * Entry-Calls * NumMeals;

Dining (Maximum-Entries, Num-Meals, Print-Trace);

end Dining-Philosophers;

C.1.6 package Philosopher Info.

package Philosopher-Info is

Nu.Phils constant := 5;
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Entry-Calls : constant :a 6; -- number of entry calls/cycle

subtype Phil.Id is integer range O..1uaPhils-1;

type Phil-Actions is (enter, leave, up.right.fork, up.left.fork,
down.right.fork, down.left-fork);

subtype EventString is string (1..35);

-- These entries correspond to the entry queues
type Entry-Points is (Enter, PickUpFork.0, Pick.Up.Fork-1,

PickUp.Fork.2, PickUpFork_3,
Pick.Up.Fork_4, Put.Domn.Fork.0,
Put.Down_Fork-1, Put.DonFork.2,
PutDown.Fork_3, PutDown.Fork_4,
Think_O, Think1i, Think_2, Think_3,
Think.4);

type Qing.StatRecord is record
service : duration : 0.0;
ait : duration 0.0;

delta-arrival : duration 0.0;
last-arrival : duration : 0.0;

end record;

-- This is a global array
QingStats : array (Entry-Points) of QingStatRecord;

function GetEntryIndex
(Id : PhilosopherInfo.PhilId;
Action : PhilosopherInfo.PhilActions)

return EntryPoints;

function Create.Trace.String
(Id PhilosopherInfo.PhilId;
Action : Philosopher.Info.Phil-Actions)

return Event-String;

end Philosopher.Info;

package body Philosopher-Info is

function GetEntry.Index
(Id : Philosrpher-Info. Phil.Id;

Action : PhilosophirInfo.Phil-Actions)
i-.sturn Entry-Points is

Index : Entry.Points;

begin
case Action is

when enter => Index := Enter;
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when up.rightfork a>
case Id is

when 0 a> Index := PickUpFork.1;
when I a> Index :a PickUpFork.2;
when 2 a> Index :a Pick-UpFork_3;
when 3 a> Index :s PickUpFork_4;
when 4 a> Index :u PickUpFork_0;

end case;
when up-le-tjork =>

case Id is
when 0 => Index := PickUp.ForkO;
when I => Index :e Pick.UpFork.I;
when 2 a> Index :a PickUpFork2;
when 3 => Index : PickUp.Fork3;
when 4 z> Index : PickUp.ork_4;

end case;
when down.righttork =>

case Id is
when 0 => Index := Put.DownFork_l;
when I => Index : Put.Down_For_2;
when 2 => Index : Put.DownFork_3;
when 3 => Index := PutDownFork_4;
when 4 => Index :x PutDovn_ForkO;

end case;
when down-letfork v>

case Id is
when 0 => Index :- PutDown_ForkO;
when I => Index := PutDownFork_l;
when 2 => Index PutDown_Fork_2;
when 3 => Index : PutDovn_Fork_3;
when 4 => Index PutDownFoxk_4;

end case;
when leave z>

case Id is
when 0 => Index : Think_0;
when I => Index :z Think-i;
when 2 => Index : Think_2;
when 3 => Index : Think3;
when 4 => Index := Think.4;

end case;
end case;
return Index;

end GetEntryIndex;

function CreateTraceString
(Id : Philosophr.Into.PhilId;
Action : Philosopher-In.o.PhilActions)

return Event-String is

Event : Event-String := (others => 1 1);
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begin
Event (1..11) :a "Philosopher";
case Action is

when enter 0>
Event (12..13) := Phil...dlimage(Id);
Event (14. .32) :a "1 enters dining room";

when leave 0>
Event (12. .13) :uPhil..Id'image(!d);
Event (14..32) :* leaves dining room";

when up-.right.4ork a>
Event (12..13) aPhil..Idlixage(Id);

Event (14..27) :~"picks up fork'";
it Id/=4 then

Event (28. .29) :*Phil-..dimage(Id+1);
else

Event (28. .29) Integerimage(O);
end if;

when up..left-..ork =>
Event (12. .13) :=Phil-Idimage~ld);
Event (14. .27) :z 1 picks up fork";
Event (28. .29) :=Phil..Id'image~ld);

when down.right-fork =>
Event (12. .13) Phil-.Id'image(Id);
Event (14. .28) S"puts down fork";
it Id/=4 then

Event (29.-30) Phil..Id'imago(Id+1);
else

Event (29.-30) Integerlimagis(0);
end if;

when down-.left-.fork =>
Event (12. .13) :Phil-.Id'image~ld);
Event (14. .28) := puts down fork";
Event (29.-30) Phil..Id'image(Id);

end case;
return Event;

end Create.Trace-.String;

end Philosopher-.Into;

C.1.7 procedure Dining.

with Philomopher-Into, Calendar;
procedure Dining (NuEntries in Integer;

lumileals in Integer;
Print-.Trace in Boolean) is

Trace: array (1. .Iua.Entries) of Philosopher-.Info.Event-.String;

task type Philosopher is
entry Birth (I :in Philosopher..Info.Phil-ld;

t..think :in Float);
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end Philosopher;

task type Fork is

e ntry Pick-.Up (t..accept out Duration);
entry Put..Down(t..accept :out Duration);

end Fork;

task Host is
entry Enter (t-accept : out Duration);
entry Leave (t-accept : out Duration);

end Host;

task Collect-Entries is
entry Iext..Entry (Id :in Philosopher-.Ino.Phil-ld;

,Action : in Philosopher.Ino.Phil-Actions);
entry Output-.Trace;

end Collect..Entries;

task Collect-.Cycle..Stats is
entry Start-.of-.Day (Id : Philosopher-.Ino.Phil~ld;

Time :Duration);
entry Pass-.Timing (Id :Philosopher-.Into.Phil.Id;

t..thiflk.
t-sat,
t..wait :duration);

entry End-.o-Day (Id :Philosopher-Into.Phil-l.d;
Tine :Duration);

end Collect-.Cycle..Stats;

Forks :array (Philosopher.Into.Phil.Id) of Fork;
Philosophers :array (Philosopher-.Ino.Phil-Id) of Philosopher;

task body Philosopher is separate;
task body Fork is separate;
task body Host is separate;
task body Collect-Entries is separate;
task body Collect-.Cycle-.Stats is separate;

begir,

Philosophers (0).Birth(0.9.0);
Philosophers(1) .Birth(1 ,4.0);
Philosophers(2) .Birth(2,2.333);
Philosophexs(3) .Birth(3,1 .5);
Philosophers (4) .Birth(4, 1.0);

end Dining;

C.1.8 task Fork.

separate(Dining)

C-13



task body Fork is

-- A fork can be picked up or put down. The Fork task
-- accepts calls to Pick.Up and Put-Down sequentially.
-- t.accept is returned to the calling task and is used
-- to determine the service and wait times for the
-- entry queues.

begin
loop

select
accept PickUp (t-accept : out Duration) do

t.accept :a Calendar.Seconds(Calendar.Clock);
end Pick.Up;
accept PutDown(t.accept : out Duration) do

t.accept := Calendar.Seconds(Calendar.Clock);
end Put-Down;

or
terminate;

end select:
end loop;

end. Fork;

C.1.9 task Host.

separate(Dining)
task body Host is

-- The host stands at the door of the dining room and
-- allows the philosophers to enter or leave.
-- Only four philosophers are allowed in the dining
-- room at a time in order to prevent deadlock.
-- .accept is returned to the calling task and is used
-- to determine the servici and wait times for the
-- entry queues.

Nun.inRoom : integer :z 0;
Id : Philosopher.Info.Phil.Id;

begin
loop

select
when Num-in.Room < 4 ->

accept Enter (t.accept : out Duration) do
t-accept Calendar.Seconds(Calendar.Clock);

end Enter;
Num.in.Room, Nuin.-Room + 1;

or
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when Nun.in.Roon > 0 =>
accept Leave (t.accept : out Duration) do

t-accept := Calendar.Seconds(Calendar.Clock) ;
end Leave;
Iun-in.itoon :a Rum.in..Roon - 1;

or
terminate;

end select;
end loop;

end Host;

C.1.1O task Philosopher.

with TextO , Calendar, Random.Nunber;
use Text.O, Random.umber;
separate (Dining)
task body Philosopher is

-- Package Random-lumber contains the function Next
-- that returns a random float. The random number
-- generator is used for the eating and thinking delays.

package flt-io is new textjo.floatjio(float);

Eating-Time : float 0.9;
ThinkingTime : float;
Double : float : 2.0;

Left-Fork,
Right.Fork,
Temp,
Id : PhilosopherInto.Phil-Id;
Heals-Eaten : Integer := 0;
Entry.Index,
Entry.Index.R : PhilosopherInto.EntryPoints;

Beg.Think,
Beg.Eat,
Beg.of.Cycle,
End-of.Cycle Duration := 0.0;

qarrival,
q.arrival.R,
q.accept,
q.accept.R,
q.complete,
q-complete.R duration := 0.0;

use Philosopher.Into;
package Dur-I0 is new FixediO (Duration); use DurIO;
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-- get seat assignment and thinking time
accept Birth (I : in Philosophez..Info.Phil-ld;

t..think : in Float) do
Id := 1;
Thinking-.Time := t-.think;

end Birth;
Collect-.Cycle-.Stats.Stat.o..Day (Id, Calentdar.Seconds(Calendax.Clock));

-- got fork assignments
Left-Fork :a Id;
Tamp :a (intager(Left..Fork) + 1) mod 5;
Right-.Fork :a Philosopher-.Info.Phil-.Id(Temp);

while Meals-Eaton < lun-Meals loop

Beg-.of-.Cycle :z Calendar. Seconds (Calendar. Clock);

----enter dining room/collect qing stats/add entry to trace
q..arrival := Calendar. Seconds (Calendar. Clock);
Host. Enter(q..accept);
q-.complete Calendar.Seconds(Calendar.Clock);
Entry-.Index :sGet..Entry-..Idex(Id, enter);
Qing..Stats(Entry..Indez).service :-

Qing..Stats(Entry-luIdex).service + Cq-.complete - q-.accept);
Qing..Stats(Entry-.Index) .vait :

Qing-.Stats(Entry-.Index).vait + Cq..accept - q..arrival);
it Qing-.Stats(Entry-.Index).last-.arrival /= 0.0 then

Qing-.Stats(Entry-.Indox) .delta-.arrival :
q..arrival - Qing..Stats(Entry-.Index) .last-.arrival;

end it;
Qing..Stats (Entry-.Index) .last-.arriva1 := q-arrival;

Collect-.Entries.Next-.Entry (Id, enter);

----pick up left fork and collect qing stats and entry trace
q-.arival := Calendar.Seconds(Calendar.Clock);
Forks (Left-.Fork).Pick-.Up(q..accept);
Entry-.Index := Get..Entry..Index(Idup.left-..ork);
if Qing-.Stats(Entry-l.Idex).last..arrival /z 0.0 then

qing-.Stats(Entry-lndex) .delta_.arival :
q..arival - Qing-.Stat(Entry-.ndex) .last..arrival;

end it;

----pick up right fork
q..arrival-R := Calendar.Seconds(Calendar.Clock);
Forks (Right..Fork) .Pick-.Up(q-.accept-.R);
q-.complet*-.R :nJ Callandar.Secozids(Calendar.Clock);
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it Qing-.Stats (Eatry-..Idx-.R).Last-.arrival . 0 0.0 -Chan
Qing-.Stats(Etry..Idex-.R) .delta-arrival :a

q..azrival-t - Qing-Stat(tryIndx-...)ast-.arrival;
end it;

Collect-jntries.Next.Untry (Id, up-.rightfork);

-eat

leg-Eat :* Clendar.Seconds(Calender.Clock);
delay duration(Rating-Time * Next);
q..complete :a Calendar.Seconds(Cslendar.Clock);,
QingStats (Entry..Indez). service :=

Qing-.Stato(Sntry-I.ndx).service + (q-.complete - q-.accept);
Qing-.Stats (Entry-.Index) .wait : =

Qing-Stats(ntry.Index).wait + (q..accept - q..arrival);

delay duration(Eating.Tia* * Next);
q..coiuplete-.R := Calendar.Seconds(Calendar.Clock);
Qing-Stat(EntryIndx-..f)servie :=

Qing..Stats(Entry-.Indx-R).service + Cq-.completej?. - q-.accept-R);

Qing..Stats(Entry_Index..R).wait + (q-.accept..f - q-.arrival-.R);

put down right fork
q..arrival := CalendL:.Seconds(Calendar.Clock);
Forks Caight-.Fork) .Put..Down(q-.accept);
q..complete :a Calendar.Seconds(Calendar.Clock);
Entry-.Index := Get-EntTy-.Index(Id,dow..right-.fork);
Qirng-.Stats CEntry..Index).service :=

Qing..Stats(Entry-.Index).service + (q..complete - q-.accept);
Qing..Stats(Entry-.Indez) .vait :z

qing-.Stats(Entry-.Index).walat + (q..accept - q-.arrival);
if Qing-.Stats(Entry-.Index).last-.arrival /= 0.0 then

Qing-Stats(Entry-Index) .delta-.arrival :
q..arrival - Qing-.Stats(Entry-..Idex) .last..arrival;

end it;
Qing-Stats (Entry-.Index) .last..arrival :z q..arrival;

Collect-.Entries.Next.Entry (Id, down.rightfork):

-put down left fork
q..arrival : = Calendar. Seconds (Calendar. Clock);
Forks (Left-.Fork) Put..Down(q..accept);
q..coplete Calendar. Seconds(Calendaz .Clock);
Entry-.Index :Get..Entry..udex(Id,dowi..left..fork);
Qing-.Stats(Entry..Index) .service :=

Qing_.Stats(Entry-IIdex).service + (q-.complete - q-.accept);
Qing-.Stato(Entry-.Index) .wait :

Qing-.Stato(Entry-.Indox).wait + Cq..accept - q..arrival);
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if Qing-Stats(Etry-.Idez).xast...rriva /a 0.0 then
Qing-.Stats(Zatry.Indez) .delta..ezrivaI :a

q-arrival - qing..Stats(Nntry..Index) .last-arrival;
end if;
qing..Stats (Bntry..Indez)-.last..arrival := q..arrivai;

Collect-..ntriss.1nju..Itry (Id, doun.loft-f.ork);

Neala,.Eaten := Meals-Eaton + 1;

----leave dining room
q...rrival :a Calendar.Seconds(Calendar.Clock);
Host.Leave (q..accept);
Entry-Iadez :a Get-Z.ntry-.Indz(Id,leavs);
if Qing_.Stats(Rntry..Idex).lastarrival /a 0.0 then

q-arrival - Qing-.Stats(Entry-.Index) .last..arrival;
end if;
Qing..Stats (Entry-Index) .last-.arrival q...marrival;

Collect..Entries .Next..Entry (Id, leave);

Beg-.Think :a Calendar.Seconds(Calendar.Clock);
delay duration(Double * Thiiiking_.Time * Next);
q..complete := Calendar.Seconds(Calendar.Clock);

Qing-.Stats(Entry..Indez).service :a
Qing..Stats(Entry.Index).service + (q..complete - q-.accept);

Qing..Stats(Entry-..Idez) .wait :
Qing-.Stats(Entry..Index).wait + (q-accept - q-arrival);

End..of-.Cycl* : a Calendar. Seconds (Calendar. Clock);

Collect-.Cycle..Stats .Pass..?iming
(Id,
End-ofCycle - Beg-Tink,
Deg_.Thirtk - Bog-.Eat,
Beg-Eat - Beg.of-.Cycle);

end loop;

Collect-.Cycle-.Stats.End.ot.Day (Id, Calendax.Seconds(Calendar.Clock));

end Philosopher;

C.1.11 task Collect Entries.

with Text..I; usne Text..IO;
separate(Dining)
task body Collect-Entries is
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The-ld : Philosopher.Info.Phil.Id;
The-Action : Philosopher.Info.Phil.Actions;

begin
for i in t..Numntries loop

accept Next..ntry
(Id : in Philosopher.Info.Phil.Id;
Action : in Philosopher.Info.Phil.Actions) do
The.Id := Id;
TheAction := Action;

end hext._ntry;
Trace(i) := Philosopher.Info.CreateTrace.String

(TheId, The-Action);
end loop;

accept Output.Trace;
if Print.Trace then

for i in 1..um.Entries loop
TextIO.put-line (Trace(i));

end loop;
end if;

end Collect-Entries;

C.1.12 task Collect Cycle Stats.

with Text.IO; use Text-IO;
separate(Dining)
task body Collect.Cycle.Stats is

use Philosopher.Into;
package IntIO is new Integer.IO(Integer);
package Flt.IO is new FloatIO(Float);
package ClockIO is new Fixed.IO(Duration);
package Entry.IO is new EnuerationIO(Entry.Points);
use Int.IO, Flt.IO, Clock.IO, EntryIO;

Total.Loops : Integer := (NuaNeals + 2)*NumPhils;
-- record start and stop times in an array

type Times is array (PhilId) of Duration;
Start-Times,
End-Times : Times;

-- record timing information for each cycle
type Timing.Record is record

think : duration;
wait : duration;
eat : duration;

end record;

type Timing.Array is array (PhilId,i..Num_Meals) of Timing-Record;
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Cycle-Times : TimingArray;
Total : TimingRecord;

-- keep track of number of times philosophers eat
type Keala is array (Phil.ld) of Integer;
MealsEaten : Heals :a (others a> 0);

Pid : Phil.Id;
Cycle.Total,
Cycle.Subtotal,
Think,
Wait.,
Eat : Duration;

lambda,
mu,
rho,
W. T, 1, 1 : float := 0.0;

begin
put-line("total loops " & integerimage(totalloops));

-- collect raw data
for i in 1..TotalLoops loop

put-line ("loop number ' & integer'image(i));
select

accept Start-of.Day (Id : Philosopher.Into.PhilId;
Time : Duration) do

StartTimes(Id) := Time;
end Start.of.Day;

or
accept Pass.Timing (Id : PhilosopherInto.PhilId;

t-think,
t-eat,
tweait : duration) do

Pid :x Id;
Think := t_.think;
Eat := t-eat;
Wait :a t.wait;

end Pass-Timing;

Meals.Eaten(Pid) := MealsEaten(Pid) + 1;
CycleTimes(Pid,Xeals.Eaten(Pid)) :s

(Think, Wait, Eat);
or

accept End.of.Day (Id : Philosopher.Ino.Phil-ld;

Time : Duration) do
End.Times(Id) := Time;

end End-of.Day;

end select;
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end loop;

-- generate cycle statistics
for i in Phil.ld loop

Think := 0.0;
Wait :8 0.0;
Eat :8 0.0;

put-line ("Philosopher" & Phil.dlizage(i) & " Average Cycle Times");
for j in 1..Rlum-eals loop

-- sum the cycle tines
Think :a Think + Cycle.Tines(ij).think;
Wait :* Wait + Cycle.Tize(ij).wait;
Eat Eat + CycleTimee(ij).eat;

end loop; -- j index

Total.think :- Total.think + Think;
Total.wait :a Total.wait + Wait;
Total.eat : Total.eat + Eat;
Cycle-Subtotal :- Think + Wait + Eat;
Cycle-Total :a Cycle.Total + Cycle.Subtotal;

-- output average cycle statistics
put ("Thinking Time X '*);
put (duration(Think/um.Neals), torez>6) ;
newline;

put ("Waiting Time 3");

put (duration(Wait /Nun.Meals), fore=>6);
newline;

put ("Eating Time "
put (duration(Eat /IunMeals), fore=>6);
new-line;

put ("Delta Cycle Time z ");
put(End.Times(i) - Start.Ties(i), forem>6);
nev.line;
put ("Actual Time "
put (Cycle.Subtotal, fore=>);
newline;
put ("Overhead
put (EndTimes(i) - StartTimes(i) - Cycle-Subtotal, fore=>6);
new.line(2);

end loop; -- index i

put.line ("Averages for all the Cycles");
put ("Thinking Time a ");
put (duration(Total.think/(Num.Phils * Nus.-eals)));
ne.line;
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put ("Waiting Time
put (duration(Total.ait/(Nun.Phile * Iim..)ealu)));
new-line;
put ("Eating Time
put (duration(Total.eat/(u..Phile Nun-Neale)));
now-line;

-- output qing state
new.l in ( 2);
put-.line C"Queueing Timing Statistics "1); now-.line;
put-linet( Delta");
put..line ("Entry Point Arrival Tine Service Time Wait Time");
put-line ("------------ ------------ ------------ ---------
for i in Entryj.o~ats loop

put Ui, widthu>1S);
put (duration(Qin..Stats(i) .delta..arrival/(Num-..eals-1)), tore=>S);
put (duration(Qing-Stats(i) .service/Num-.Neals), fore=>1O);
put (duration(Qing-.Stats(i) .wait/Ium-Neals), forea>1O);
now-line;

end loop;

N := float(Nwa.Neals);

for i in Entry-.Points loop
X :a float (Qing.Atats(i) .deltarrival);
lambda := (1-1.0)/X;
X : float(Qing-.Stats(i) .service);
mu :I/X;
rho lambda / mu;
V :u(rho/mu)/(I.O-rho);

T (1.0/mu)/(i.0-rho);

now-line;
entry_1.0.put (i, widtha>18); newj.ine;
put ("o lambda a ") tlt_1.Z.put(" mbda, *xp=>0,aft=>4); now-.line;
put (" mu a I') lt..IO.put(n, exp=>0,aft=>4); new-.line;
put (" rho = ") Ilt-.IO.p'ut(rho, exp=>0,aft=>4); new-.line;
put C# V a "1); tlt...0.put(W, expx>O,aft=>4); new-.linie;
put (t" T a "1); tlt..!0.put(T, *zp=>0,aft=>4); now-.line;

end loop;
Collect-.Entrits .Output_.Trace;

end Collect.Cycle-.Stats;
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